SGaleshchuk
commited on
Commit
•
b6ffd4b
1
Parent(s):
6712069
Update README.md
Browse files
README.md
CHANGED
@@ -36,33 +36,53 @@ This model is a fine-tuned version of [SGaleshchuk/Llama-2-13b-hf_uk_rank-32_ft]
|
|
36 |
|
37 |
## Intended uses & limitations
|
38 |
```python
|
|
|
|
|
|
|
|
|
39 |
# unpatch flash attention
|
|
|
40 |
from peft import AutoPeftModelForCausalLM
|
41 |
from transformers import AutoTokenizer
|
42 |
|
|
|
|
|
43 |
# load base LLM model and tokenizer
|
44 |
model = AutoPeftModelForCausalLM.from_pretrained(
|
45 |
-
|
46 |
low_cpu_mem_usage=True,
|
47 |
torch_dtype=torch.float16,
|
48 |
load_in_4bit=True)
|
49 |
|
50 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
|
|
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
55 |
with torch.inference_mode():
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
)
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
66 |
```
|
67 |
|
68 |
## Training procedure
|
|
|
36 |
|
37 |
## Intended uses & limitations
|
38 |
```python
|
39 |
+
# tested with colab+A100 GPU
|
40 |
+
!pip install -q -U peft transformers==4.30
|
41 |
+
!pip install flash-attn --no-build-isolation
|
42 |
+
!pip install einops bitsandbytes accelerate
|
43 |
# unpatch flash attention
|
44 |
+
import torch
|
45 |
from peft import AutoPeftModelForCausalLM
|
46 |
from transformers import AutoTokenizer
|
47 |
|
48 |
+
model_id = "SGaleshchuk/Llama-2-13b-summarization_uk_dpo"
|
49 |
+
|
50 |
# load base LLM model and tokenizer
|
51 |
model = AutoPeftModelForCausalLM.from_pretrained(
|
52 |
+
model_id,
|
53 |
low_cpu_mem_usage=True,
|
54 |
torch_dtype=torch.float16,
|
55 |
load_in_4bit=True)
|
56 |
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
58 |
+
|
59 |
+
def prepare_instruction(text):
|
60 |
+
|
61 |
|
62 |
+
prompt = """The article to summarize in maximum 100 words:{text}. Summary:""" # adapt to your needs
|
63 |
+
|
64 |
+
return prompt.format(
|
65 |
+
text=text,
|
66 |
+
)
|
67 |
+
def summarization(text):
|
68 |
+
instruction = prepare_instruction(text)
|
69 |
+
input_ids = tokenizer(instruction, return_tensors="pt", truncation=True).input_ids.cuda()
|
70 |
with torch.inference_mode():
|
71 |
+
outputs = model.generate(
|
72 |
+
input_ids=input_ids,
|
73 |
+
max_new_tokens=128,
|
74 |
+
do_sample=True,
|
75 |
+
top_p=0.9,
|
76 |
+
temperature=1e-2,
|
77 |
)
|
78 |
+
result = tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0]
|
79 |
+
result = result[len(instruction) :]
|
80 |
+
print(result)
|
81 |
+
return result
|
82 |
+
|
83 |
+
text = """your text here to summarize"
|
84 |
+
result = summarization(text)
|
85 |
+
|
86 |
```
|
87 |
|
88 |
## Training procedure
|