Mainak Manna
First version of the model
8b658ac
|
raw
history blame
2.66 kB
---
language: Deustch Italian
tags:
- translation Deustch Italian model
datasets:
- dcep europarl jrc-acquis
widget:
- text: "Die Mitgliedstaaten müssen bei Verstößen gegen die Pflicht, beim Überschreiten der Außengrenzen der Europäischen Union Bewegungen von Barmitteln anzumelden, wirksame, angemessene und abschreckende Strafen verhängen."
---
# legal_t5_small_trans_de_it model
Model on translating legal text from Deustch to Italian. It was first released in
[this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis, europarl and dcep.
## Model description
legal_t5_small_trans_de_it is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters.
## Intended uses & limitations
The model could be used for translation of legal texts from Deustch to Italian.
### How to use
Here is how to use this model to translate legal text from Deustch to Italian in PyTorch:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline
pipeline = TranslationPipeline(
model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_de_it"),
tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_de_it", do_lower_case=False,
skip_special_tokens=True),
device=0
)
de_text = "Die Mitgliedstaaten müssen bei Verstößen gegen die Pflicht, beim Überschreiten der Außengrenzen der Europäischen Union Bewegungen von Barmitteln anzumelden, wirksame, angemessene und abschreckende Strafen verhängen."
pipeline([de_text], max_length=512)
```
## Training data
The legal_t5_small_trans_de_it model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts.
## Training procedure
### Preprocessing
### Pretraining
An unigram model with 88M parameters is trained over the complete parallel corpus to get the vocabulary (with byte pair encoding), which is used with this model.
## Evaluation results
When the model is used for translation test dataset, achieves the following results:
Test results :
| Model | BLEU score |
|:-----:|:-----:|
| legal_t5_small_trans_de_it | 43.3|
### BibTeX entry and citation info