File size: 2,946 Bytes
8bcac7d 28c9af0 8bcac7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
language:
- es
- it
tags:
- translation Spanish Italian model
datasets:
- dcep europarl jrc-acquis
widget:
- text: "Por el Parlamento Europeo Por el Consejo"
---
# legal_t5_small_multitask_es_it model
Model on translating legal text from Spanish to Italian. It was first released in
[this repository](https://github.com/agemagician/LegalTrans). The model is parallely trained on the three parallel corpus with 42 language pair
from jrc-acquis, europarl and dcep along with the unsupervised task where the model followed the task of prediction in a masked language model.
## Model description
No pretraining is involved in case of legal_t5_small_multitask_es_it model, rather the unsupervised task is added with all the translation task
to realize the multitask learning scenario.
## Intended uses & limitations
The model could be used for translation of legal texts from Spanish to Italian.
### How to use
Here is how to use this model to translate legal text from Spanish to Italian in PyTorch:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline
pipeline = TranslationPipeline(
model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_multitask_es_it"),
tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_multitask_es_it", do_lower_case=False,
skip_special_tokens=True),
device=0
)
es_text = "Por el Parlamento Europeo Por el Consejo"
pipeline([es_text], max_length=512)
```
## Training data
The legal_t5_small_multitask_es_it model (the supervised task which involved only the corresponding langauge pair and as well as unsupervised task where all of the data of all language pairs were available) model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 9 Million parallel texts.
## Training procedure
The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule.
### Preprocessing
An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model.
### Pretraining
## Evaluation results
When the model is used for translation test dataset, achieves the following results:
Test results :
| Model | BLEU score |
|:-----:|:-----:|
| legal_t5_small_multitask_es_it | 37.386|
### BibTeX entry and citation info
> Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
|