File size: 4,353 Bytes
892a4a5 0936b29 892a4a5 0936b29 892a4a5 a828bf3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
language: code
tags:
- summarization
widget:
- text: public static DateTime ParseUnixDateTime ( double unixTime ) { var dt = new
DateTime ( CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER
, CODE_INTEGER , CODE_INTEGER , System . DateTimeKind . Utc ) ; dt = dt . AddSeconds
( unixTimeStamp ) . ToLocalTime ( ) ; return dt ; }
---
# CodeTrans model for source code summarization csharp
Pretrained model on programming language csharp using the t5 large model architecture. It was first released in
[this repository](https://github.com/agemagician/CodeTrans). This model is trained on tokenized csharp code functions: it works best with tokenized csharp functions.
## Model description
This CodeTrans model is based on the `t5-large` model. It has its own SentencePiece vocabulary model. It used multi-task training on 13 supervised tasks in the software development domain and 7 unsupervised datasets.
## Intended uses & limitations
The model could be used to generate the description for the csharp function or be fine-tuned on other csharp code tasks. It can be used on unparsed and untokenized csharp code. However, if the csharp code is tokenized, the performance should be better.
### How to use
Here is how to use this model to generate csharp function documentation using Transformers SummarizationPipeline:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline
pipeline = SummarizationPipeline(
model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_large_source_code_summarization_csharp_multitask"),
tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_large_source_code_summarization_csharp_multitask", skip_special_tokens=True),
device=0
)
tokenized_code = "public static DateTime ParseUnixDateTime ( double unixTime ) { var dt = new DateTime ( CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , System . DateTimeKind . Utc ) ; dt = dt . AddSeconds ( unixTimeStamp ) . ToLocalTime ( ) ; return dt ; }"
pipeline([tokenized_code])
```
Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/pre-training/source%20code%20summarization/csharp/large_model.ipynb).
## Training data
The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1)
## Training procedure
### Multi-task Pretraining
The model was trained on a single TPU Pod V3-8 for 120,000 steps in total, using sequence length 512 (batch size 4096).
It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture.
The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training.
## Evaluation results
For the source code summarization tasks, different models achieves the following results on different programming languages (in BLEU score):
Test results :
| Language / Model | Python | SQL | C# |
| -------------------- | :------------: | :------------: | :------------: |
| CodeTrans-ST-Small | 8.45 | 17.55 | 19.74 |
| CodeTrans-ST-Base | 9.12 | 15.00 | 18.65 |
| CodeTrans-TF-Small | 10.06 | 17.71 | 20.40 |
| CodeTrans-TF-Base | 10.94 | 17.66 | 21.12 |
| CodeTrans-TF-Large | 12.41 | 18.40 | 21.43 |
| CodeTrans-MT-Small | 13.11 | 19.15 | 22.39 |
| CodeTrans-MT-Base | **13.37** | 19.24 | 23.20 |
| CodeTrans-MT-Large | 13.24 | 19.40 | **23.57** |
| CodeTrans-MT-TF-Small | 12.10 | 18.25 | 22.03 |
| CodeTrans-MT-TF-Base | 10.64 | 16.91 | 21.40 |
| CodeTrans-MT-TF-Large | 12.14 | **19.98** | 21.10 |
| CODE-NN | -- | 18.40 | 20.50 |
> Created by [Ahmed Elnaggar](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/) and Wei Ding | [LinkedIn](https://www.linkedin.com/in/wei-ding-92561270/)
|