File size: 2,820 Bytes
a37189a
49d8cee
a37189a
 
 
 
0950a80
a37189a
73e1c70
d53f7ed
73e1c70
 
4b9690b
4b55848
 
 
 
 
 
f2162f5
a37189a
4b55848
a37189a
4b9690b
 
 
 
 
 
 
f413c0d
101e032
4b9690b
4b55848
4b9690b
4b55848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83573d9
4b55848
 
 
 
 
a37189a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

---
language: "en"
tags:
- Financial Language Modelling
widget:
- text: "Stocks rallied and the British pound [MASK]."
---
## Dataset Summary
- **Homepage:** https://salt-nlp.github.io/FLANG/
- **Models:** https://huggingface.co/SALT-NLP/FLANG-BERT
- **Repository:** https://github.com/SALT-NLP/FLANG

## FLANG
FLANG is a set of large language models for Financial LANGuage tasks. These models use domain specific pre-training with preferential masking to build more robust representations for the domain. The models in the set are:\
[FLANG-BERT](https://huggingface.co/SALT-NLP/FLANG-BERT)\
[FLANG-SpanBERT](https://huggingface.co/SALT-NLP/FLANG-SpanBERT)\
[FLANG-DistilBERT](https://huggingface.co/SALT-NLP/FLANG-DistilBERT)\
[FLANG-Roberta](https://huggingface.co/SALT-NLP/FLANG-Roberta)\
[FLANG-ELECTRA](https://huggingface.co/SALT-NLP/FLANG-ELECTRA)

## FLANG-DistilBERT
FLANG-DistilBERT is a pre-trained language model which uses financial keywords and phrases for preferential masking of domain specific terms. It is built by further training the DistilBERT language model in the finance domain with improved performance over previous models due to the use of domain knowledge and vocabulary.

## FLUE
FLUE (Financial Language Understanding Evaluation) is a comprehensive and heterogeneous benchmark that has been built from 5 diverse financial domain specific datasets.

Sentiment Classification: [Financial PhraseBank](https://huggingface.co/datasets/financial_phrasebank)\
Sentiment Analysis, Question Answering: [FiQA 2018](https://huggingface.co/datasets/SALT-NLP/FLUE-FiQA)\
New Headlines Classification: [Headlines](https://www.kaggle.com/datasets/daittan/gold-commodity-news-and-dimensions)\
Named Entity Recognition: [NER](https://paperswithcode.com/dataset/fin)\
Structure Boundary Detection: [FinSBD3](https://sites.google.com/nlg.csie.ntu.edu.tw/finweb2021/shared-task-finsbd-3)

## Citation
Please cite the work with the following citation:
```bibtex
@INPROCEEDINGS{shah-etal-2022-flang,
    author = {Shah, Raj Sanjay  and
      Chawla, Kunal and
      Eidnani, Dheeraj and
      Shah, Agam and
      Du, Wendi and
      Chava, Sudheer and
      Raman, Natraj and
      Smiley, Charese and
      Chen, Jiaao and
      Yang, Diyi },
    title = {When FLUE Meets FLANG: Benchmarks and Large Pretrained Language Model for Financial Domain},
    booktitle = {Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
    year = {2022},
    publisher = {Association for Computational Linguistics}
}
```

## Contact information
Please contact Raj Sanjay Shah (rajsanjayshah[at]gatech[dot]edu) or Sudheer Chava (schava6[at]gatech[dot]edu) or Diyi Yang (diyiy[at]stanford[dot]edu) about any FLANG-DistilBERT related issues and questions.


---
license: afl-3.0
---