File size: 2,875 Bytes
676f5b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: gemma
base_model: google/gemma-2-2b
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: collapse_gemma-2-2b_hs2_accumulatesubsample_iter16_sftsd1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# collapse_gemma-2-2b_hs2_accumulatesubsample_iter16_sftsd1

This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2063
- Num Input Tokens Seen: 4908568

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 8
- eval_batch_size: 16
- seed: 1
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Input Tokens Seen |
|:-------------:|:------:|:----:|:---------------:|:-----------------:|
| No log        | 0      | 0    | 1.3909          | 0                 |
| 1.384         | 0.0528 | 5    | 1.2748          | 263536            |
| 1.0504        | 0.1055 | 10   | 1.2136          | 521104            |
| 0.9216        | 0.1583 | 15   | 1.2253          | 786688            |
| 0.705         | 0.2111 | 20   | 1.2516          | 1052112           |
| 0.6686        | 0.2639 | 25   | 1.2797          | 1310000           |
| 0.622         | 0.3166 | 30   | 1.2586          | 1569720           |
| 0.5686        | 0.3694 | 35   | 1.2699          | 1830672           |
| 0.4761        | 0.4222 | 40   | 1.2417          | 2099344           |
| 0.4431        | 0.4749 | 45   | 1.2457          | 2362288           |
| 0.4104        | 0.5277 | 50   | 1.2311          | 2622728           |
| 0.4555        | 0.5805 | 55   | 1.2327          | 2882280           |
| 0.3677        | 0.6332 | 60   | 1.2202          | 3140984           |
| 0.32          | 0.6860 | 65   | 1.2245          | 3401624           |
| 0.3617        | 0.7388 | 70   | 1.2184          | 3659992           |
| 0.2982        | 0.7916 | 75   | 1.2144          | 3920072           |
| 0.32          | 0.8443 | 80   | 1.2069          | 4179680           |
| 0.4088        | 0.8971 | 85   | 1.2115          | 4434784           |
| 0.4142        | 0.9499 | 90   | 1.2070          | 4701080           |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1