File size: 2,875 Bytes
8a483e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: gemma
base_model: google/gemma-2-2b
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: collapse_gemma-2-2b_hs2_accumulatesubsample_iter14_sftsd0
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# collapse_gemma-2-2b_hs2_accumulatesubsample_iter14_sftsd0

This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2169
- Num Input Tokens Seen: 4987864

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 8
- eval_batch_size: 16
- seed: 0
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Input Tokens Seen |
|:-------------:|:------:|:----:|:---------------:|:-----------------:|
| No log        | 0      | 0    | 1.3909          | 0                 |
| 1.3601        | 0.0537 | 5    | 1.2756          | 273168            |
| 1.0514        | 0.1075 | 10   | 1.2201          | 542832            |
| 0.8862        | 0.1612 | 15   | 1.2153          | 806384            |
| 0.7575        | 0.2149 | 20   | 1.2508          | 1072264           |
| 0.8064        | 0.2686 | 25   | 1.2672          | 1345384           |
| 0.7043        | 0.3224 | 30   | 1.2443          | 1610128           |
| 0.7069        | 0.3761 | 35   | 1.2386          | 1880920           |
| 0.5027        | 0.4298 | 40   | 1.2439          | 2148696           |
| 0.5934        | 0.4835 | 45   | 1.2404          | 2411376           |
| 0.5024        | 0.5373 | 50   | 1.2125          | 2683616           |
| 0.4872        | 0.5910 | 55   | 1.2366          | 2946376           |
| 0.4414        | 0.6447 | 60   | 1.2230          | 3215768           |
| 0.5175        | 0.6985 | 65   | 1.2200          | 3485104           |
| 0.4704        | 0.7522 | 70   | 1.2172          | 3752080           |
| 0.5442        | 0.8059 | 75   | 1.2149          | 4021976           |
| 0.4186        | 0.8596 | 80   | 1.2177          | 4295184           |
| 0.458         | 0.9134 | 85   | 1.2097          | 4559664           |
| 0.4203        | 0.9671 | 90   | 1.2142          | 4823808           |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1