File size: 12,245 Bytes
231542c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
from codecs import EncodedFile
from datetime import datetime
from typing import Optional

import datasets
import torch
from pytorch_lightning import LightningDataModule, LightningModule, Trainer, seed_everything
from torch.utils.data import DataLoader
from transformers import (
    AutoConfig,
    AutoModelForSequenceClassification,
    AutoTokenizer,
    get_linear_schedule_with_warmup,
    get_scheduler,
)
import torch
import sys
import os
from argparse import ArgumentParser
from datasets import load_dataset
import tqdm
import json
import gzip
import random
from pytorch_lightning.callbacks import ModelCheckpoint
import numpy as np
from shutil import copyfile
from pytorch_lightning.loggers import WandbLogger
import transformers


class MSMARCOData(LightningDataModule):
    def __init__(
        self,
        model_name: str,
        triplets_path: str,
        langs,
        max_seq_length: int = 250,
        train_batch_size: int = 32,
        eval_batch_size: int = 32,
        num_negs: int = 3,
        cross_lingual_chance: float = 0.0,
        **kwargs,
    ):
        super().__init__()
        self.model_name = model_name
        self.triplets_path = triplets_path
        self.max_seq_length = max_seq_length
        self.train_batch_size = train_batch_size
        self.eval_batch_size = eval_batch_size
        self.langs = langs
        self.num_negs = num_negs
        self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
        self.cross_lingual_chance = cross_lingual_chance  #Probability for cross-lingual batches

    #def setup(self, stage: str):
        print(f"!!!!!!!!!!!!!!!!!! SETUP {os.getpid()}  !!!!!!!!!!!!!!!")

        #Get the queries
        self.queries = {lang: {} for lang in self.langs}
    
        for lang in self.langs:
            for row in tqdm.tqdm(load_dataset('unicamp-dl/mmarco', f'queries-{lang}')['train'], desc=lang):
                self.queries[lang][row['id']] = row['text']

        #Get the passages
        self.collections = {lang: load_dataset('unicamp-dl/mmarco', f'collection-{lang}')['collection'] for lang in self.langs}

        #Get the triplets
        with gzip.open(self.triplets_path, 'rt') as fIn:
            self.triplets = [json.loads(line) for line in tqdm.tqdm(fIn, desc="triplets", total=502938)] 
            """
            self.triplets = []
            for line in tqdm.tqdm(fIn):
                self.triplets.append(json.loads(line))
                if len(self.triplets) >= 1000:
                    break
            """

    def collate_fn(self, batch):
        cross_lingual_batch = random.random() < self.cross_lingual_chance 

        #Create data for list-rank-loss
        query_doc_pairs = [[] for _ in  range(1+self.num_negs)]

        for row in batch:
            qid = row['qid']
            pos_id = random.choice(row['pos'])

            query_lang = random.choice(self.langs)
            query_text = self.queries[query_lang][qid]
            
            doc_lang = random.choice(self.langs) if cross_lingual_batch else query_lang 
            query_doc_pairs[0].append((query_text, self.collections[doc_lang][pos_id]['text']))

            dense_bm25_neg = list(set(row['dense_neg'] + row['bm25_neg']))
            neg_ids = random.sample(dense_bm25_neg, self.num_negs)

            for num_neg, neg_id in enumerate(neg_ids):
                doc_lang = random.choice(self.langs) if cross_lingual_batch else query_lang
                query_doc_pairs[1+num_neg].append((query_text, self.collections[doc_lang][neg_id]['text']))

        #Now tokenize the data
        features = [self.tokenizer(qd_pair, max_length=self.max_seq_length, padding=True, truncation='only_second', return_tensors="pt") for qd_pair in query_doc_pairs]
    
        return features

    def train_dataloader(self):
        return DataLoader(self.triplets, shuffle=True, batch_size=self.train_batch_size, num_workers=1, pin_memory=True, collate_fn=self.collate_fn)

    



class ListRankLoss(LightningModule):
    def __init__(
        self,
        model_name: str,
        learning_rate: float = 2e-5,
        warmup_steps: int = 1000,
        weight_decay: float = 0.01,
        train_batch_size: int = 32,
        eval_batch_size: int = 32,
        **kwargs,
    ):
        super().__init__()

        self.save_hyperparameters()
        print(self.hparams)

        self.config = AutoConfig.from_pretrained(model_name, num_labels=1)
        self.model = AutoModelForSequenceClassification.from_pretrained(model_name, config=self.config)
        self.loss_fct = torch.nn.CrossEntropyLoss()
        self.global_train_step = 0
        

    def forward(self, **inputs):
        return self.model(**inputs)

    def training_step(self, batch, batch_idx):
        pred_scores = []
        scores = torch.tensor([0] * len(batch[0]['input_ids']), device=self.model.device)
   
        for feature in batch:
            pred_scores.append(self(**feature).logits.squeeze())

        pred_scores = torch.stack(pred_scores, 1)
        loss_value = self.loss_fct(pred_scores, scores)
        self.global_train_step += 1
        self.log('global_train_step', self.global_train_step)
        self.log("train/loss", loss_value)

        return loss_value
     

    def setup(self, stage=None) -> None:
        if stage != "fit":
            return
        # Get dataloader by calling it - train_dataloader() is called after setup() by default
        train_loader = self.trainer.datamodule.train_dataloader()

        # Calculate total steps
        tb_size = self.hparams.train_batch_size * max(1, self.trainer.gpus)
        ab_size = self.trainer.accumulate_grad_batches
        self.total_steps = (len(train_loader) // ab_size) * self.trainer.max_epochs

        print(f"{tb_size=}")
        print(f"{ab_size=}")
        print(f"{len(train_loader)=}")
        print(f"{self.total_steps=}")
        

    def configure_optimizers(self):
        """Prepare optimizer and schedule (linear warmup and decay)"""
        model = self.model
        no_decay = ["bias", "LayerNorm.weight"]
        optimizer_grouped_parameters = [
            {
                "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
                "weight_decay": self.hparams.weight_decay,
            },
            {
                "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
                "weight_decay": 0.0,
            },
        ]
        optimizer =  torch.optim.AdamW(optimizer_grouped_parameters, lr=self.hparams.learning_rate)

        lr_scheduler = get_scheduler(
            name="linear",
            optimizer=optimizer,
            num_warmup_steps=self.hparams.warmup_steps,
            num_training_steps=self.total_steps,
        )

        scheduler = {"scheduler": lr_scheduler, "interval": "step", "frequency": 1}
        return [optimizer], [scheduler]

   

def main(args):
    dm = MSMARCOData(
        model_name=args.model,
        langs=args.langs,
        triplets_path='data/msmarco-hard-triplets.jsonl.gz',
        train_batch_size=args.batch_size,
        cross_lingual_chance=args.cross_lingual_chance,
        num_negs=args.num_negs
    )
    output_dir = f"output/{args.model.replace('/', '-')}-{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}"
    print("Output_dir:", output_dir)

    os.makedirs(output_dir, exist_ok=True)

    wandb_logger = WandbLogger(project="multilingual-cross-encoder", name=output_dir.split("/")[-1])

    train_script_path = os.path.join(output_dir, 'train_script.py')
    copyfile(__file__, train_script_path)
    with open(train_script_path, 'a') as fOut:
        fOut.write("\n\n# Script was called via:\n#python " + " ".join(sys.argv))

    
    # saves top-K checkpoints based on "val_loss" metric
    checkpoint_callback = ModelCheckpoint(
        every_n_train_steps=25000,
        save_top_k=5,
        monitor="global_train_step",
        mode="max",
        dirpath=output_dir,
        filename="ckpt-{global_train_step}",
    )


    model = ListRankLoss(model_name=args.model)

    trainer = Trainer(max_epochs=args.epochs, 
                      accelerator="gpu", 
                      devices=args.num_gpus, 
                      precision=args.precision, 
                      strategy=args.strategy,    
                      default_root_dir=output_dir,
                      callbacks=[checkpoint_callback],
                      logger=wandb_logger
                      )

    trainer.fit(model, datamodule=dm)

    #Save final HF model 
    final_path = os.path.join(output_dir, "final")
    dm.tokenizer.save_pretrained(final_path)
    model.model.save_pretrained(final_path)

  
def eval(args):
    import ir_datasets
    
 
    model = ListRankLoss.load_from_checkpoint(args.ckpt)
    hf_model = model.model.cuda()
    tokenizer = AutoTokenizer.from_pretrained(model.hparams.model_name)

    dev_qids = set()

    dev_queries = {}
    dev_rel_docs = {}
    needed_pids = set()
    needed_qids = set()

    corpus = {}
    retrieved_docs = {}

    dataset = ir_datasets.load("msmarco-passage/dev/small")
    for query in dataset.queries_iter():
        dev_qids.add(query.query_id)

    
    with open('data/qrels.dev.tsv') as fIn:
        for line in fIn:
            qid, _, pid, _ = line.strip().split('\t')

            if qid not in dev_qids:
                continue

            if qid not in dev_rel_docs:
                dev_rel_docs[qid] = set()
            dev_rel_docs[qid].add(pid)

            retrieved_docs[qid] = set()
            needed_qids.add(qid)
            needed_pids.add(pid)

    for query in dataset.queries_iter():
        qid = query.query_id
        if qid in needed_qids:
            dev_queries[qid] = query.text

    with open('data/top1000.dev', 'rt') as fIn:
        for line in fIn:
            qid, pid, query, passage = line.strip().split("\t")
            corpus[pid] = passage
            retrieved_docs[qid].add(pid)


    ## Run evaluator
    print("Queries: {}".format(len(dev_queries)))

    mrr_scores = []
    hf_model.eval()

    with torch.no_grad():
        for qid in tqdm.tqdm(dev_queries, total=len(dev_queries)):
            query = dev_queries[qid]
            top_pids = list(retrieved_docs[qid])
            cross_inp = [[query, corpus[pid]] for pid in top_pids]

            encoded = tokenizer(cross_inp, padding=True, truncation=True, return_tensors="pt").to('cuda')
            output = model(**encoded)
            bert_score = output.logits.detach().cpu().numpy()
            bert_score = np.squeeze(bert_score)
        
            argsort = np.argsort(-bert_score)

            rank_score = 0
            for rank, idx in enumerate(argsort[0:10]):
                pid = top_pids[idx]
                if pid in dev_rel_docs[qid]:
                    rank_score = 1/(rank+1)
                    break

            mrr_scores.append(rank_score)
        
            if len(mrr_scores) % 10 == 0:
                print("{} MRR@10: {:.2f}".format(len(mrr_scores), 100*np.mean(mrr_scores)))

    print("MRR@10: {:.2f}".format(np.mean(mrr_scores)*100))


if __name__ == '__main__':
    parser = ArgumentParser()
    parser.add_argument("--num_gpus", type=int, default=1)
    parser.add_argument("--batch_size", type=int, default=32)
    parser.add_argument("--epochs", type=int, default=10)
    parser.add_argument("--strategy", default=None)
    parser.add_argument("--model", default='microsoft/mdeberta-v3-base')
    parser.add_argument("--eval", action="store_true")
    parser.add_argument("--ckpt")
    parser.add_argument("--cross_lingual_chance", type=float, default=0.33)
    parser.add_argument("--precision", type=int, default=16)
    parser.add_argument("--num_negs", type=int, default=3)
    parser.add_argument("--langs", nargs="+", default=['english', 'chinese', 'french', 'german', 'indonesian', 'italian', 'portuguese', 'russian', 'spanish', 'arabic', 'dutch', 'hindi', 'japanese', 'vietnamese'])
    
    
    args = parser.parse_args()

    if args.eval:
        eval(args)
    else:
        main(args)
    

# Script was called via:
#python cross_mutlilingual.py --model nreimers/mMiniLMv2-L12-H384-distilled-from-XLMR-Large