File size: 11,888 Bytes
73c83cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import argparse
import cv2
import os
import json
import numpy as np
from PIL import Image as PILImage
import joblib


def mask_nms(masks, bbox_scores, instances_confidence_threshold=0.5, overlap_threshold=0.7):
    """
    NMS-like procedure used in Panoptic Segmentation
    Remove the overlap areas of different instances in Instance Segmentation
    """
    panoptic_seg = np.zeros(masks.shape[:2], dtype=np.uint8)
    sorted_inds = list(range(len(bbox_scores)))
    current_segment_id = 0
    segments_score = []

    for inst_id in sorted_inds:
        score = bbox_scores[inst_id]
        if score < instances_confidence_threshold:
            break
        mask = masks[:, :, inst_id]
        mask_area = mask.sum()

        if mask_area == 0:
            continue

        intersect = (mask > 0) & (panoptic_seg > 0)
        intersect_area = intersect.sum()

        if intersect_area * 1.0 / mask_area > overlap_threshold:
            continue

        if intersect_area > 0:
            mask = mask & (panoptic_seg == 0)

        current_segment_id += 1
        #         panoptic_seg[np.where(mask==1)] = current_segment_id
        #         panoptic_seg = panoptic_seg + current_segment_id*mask
        panoptic_seg = np.where(mask == 0, panoptic_seg, current_segment_id)
        segments_score.append(score)
    #         print(np.unique(panoptic_seg))
    return panoptic_seg, segments_score


def extend(si, sj, instance_label, global_label, panoptic_seg_mask, class_map):
    """
    """
    directions = [[-1, 0], [0, 1], [1, 0], [0, -1],
                  [1, 1], [1, -1], [-1, 1], [-1, -1]]

    inst_class = instance_label[si, sj]
    human_class = panoptic_seg_mask[si, sj]
    global_class = class_map[inst_class]
    queue = [[si, sj]]

    while len(queue) != 0:
        cur = queue[0]
        queue.pop(0)

        for direction in directions:
            ni = cur[0] + direction[0]
            nj = cur[1] + direction[1]

            if ni >= 0 and nj >= 0 and \
                    ni < instance_label.shape[0] and \
                    nj < instance_label.shape[1] and \
                    instance_label[ni, nj] == 0 and \
                    global_label[ni, nj] == global_class:
                instance_label[ni, nj] = inst_class
                # Using refined instance label to refine human label
                panoptic_seg_mask[ni, nj] = human_class
                queue.append([ni, nj])


def refine(instance_label, panoptic_seg_mask, global_label, class_map):
    """
    Inputs:
        [ instance_label ]
            np.array() with shape [h, w]
        [ global_label ] with shape [h, w]
            np.array()
  """
    for i in range(instance_label.shape[0]):
        for j in range(instance_label.shape[1]):
            if instance_label[i, j] != 0:
                extend(i, j, instance_label, global_label, panoptic_seg_mask, class_map)


def get_palette(num_cls):
    """ Returns the color map for visualizing the segmentation mask.
    Inputs:
        =num_cls=
            Number of classes.
    Returns:
        The color map.
    """
    n = num_cls
    palette = [0] * (n * 3)
    for j in range(0, n):
        lab = j
        palette[j * 3 + 0] = 0
        palette[j * 3 + 1] = 0
        palette[j * 3 + 2] = 0
        i = 0
        while lab:
            palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i))
            palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i))
            palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i))
            i += 1
            lab >>= 3
    return palette


def patch2img_output(patch_dir, img_name, img_height, img_width, bbox, bbox_type, num_class):
    """transform bbox patch outputs to image output"""
    assert bbox_type == 'gt' or 'msrcnn'
    output = np.zeros((img_height, img_width, num_class), dtype='float')
    output[:, :, 0] = np.inf
    count_predictions = np.zeros((img_height, img_width, num_class), dtype='int32')
    for i in range(len(bbox)):  # person index starts from 1
        file_path = os.path.join(patch_dir, os.path.splitext(img_name)[0] + '_' + str(i + 1) + '_' + bbox_type + '.npy')
        bbox_output = np.load(file_path)
        output[bbox[i][1]:bbox[i][3] + 1, bbox[i][0]:bbox[i][2] + 1, 1:] += bbox_output[:, :, 1:]
        count_predictions[bbox[i][1]:bbox[i][3] + 1, bbox[i][0]:bbox[i][2] + 1, 1:] += 1
        output[bbox[i][1]:bbox[i][3] + 1, bbox[i][0]:bbox[i][2] + 1, 0] \
            = np.minimum(output[bbox[i][1]:bbox[i][3] + 1, bbox[i][0]:bbox[i][2] + 1, 0], bbox_output[:, :, 0])

    # Caution zero dividing.
    count_predictions[count_predictions == 0] = 1
    return output / count_predictions


def get_instance(cat_gt, panoptic_seg_mask):
    """
    """
    instance_gt = np.zeros_like(cat_gt, dtype=np.uint8)
    num_humans = len(np.unique(panoptic_seg_mask)) - 1
    class_map = {}

    total_part_num = 0
    for id in range(1, num_humans + 1):
        human_part_label = np.where(panoptic_seg_mask == id, cat_gt, 0).astype(np.uint8)
        #         human_part_label = (np.where(panoptic_seg_mask==id) * cat_gt).astype(np.uint8)
        part_classes = np.unique(human_part_label)

        exceed = False
        for part_id in part_classes:
            if part_id == 0:  # background
                continue
            total_part_num += 1

            if total_part_num > 255:
                print("total_part_num exceed, return current instance map: {}".format(total_part_num))
                exceed = True
                break
            class_map[total_part_num] = part_id
            instance_gt[np.where(human_part_label == part_id)] = total_part_num
        if exceed:
            break

    # Make instance id continous.
    ori_cur_labels = np.unique(instance_gt)
    total_num_label = len(ori_cur_labels)
    if instance_gt.max() + 1 != total_num_label:
        for label in range(1, total_num_label):
            instance_gt[instance_gt == ori_cur_labels[label]] = label

    final_class_map = {}
    for label in range(1, total_num_label):
        if label >= 1:
            final_class_map[label] = class_map[ori_cur_labels[label]]

    return instance_gt, final_class_map


def compute_confidence(im_name, feature_map, class_map,
                       instance_label, output_dir,
                       panoptic_seg_mask, seg_score_list):
    """
    """
    conf_file = open(os.path.join(output_dir, os.path.splitext(im_name)[0] + '.txt'), 'w')

    weighted_map = np.zeros_like(feature_map[:, :, 0])
    for index, score in enumerate(seg_score_list):
        weighted_map += (panoptic_seg_mask == index + 1) * score

    for label in class_map.keys():
        cls = class_map[label]
        confidence = feature_map[:, :, cls].reshape(-1)[np.where(instance_label.reshape(-1) == label)]
        confidence = (weighted_map * feature_map[:, :, cls].copy()).reshape(-1)[
            np.where(instance_label.reshape(-1) == label)]

        confidence = confidence.sum() / len(confidence)
        conf_file.write('{} {}\n'.format(cls, confidence))

    conf_file.close()


def result_saving(fused_output, img_name, img_height, img_width, output_dir, mask_output_path, bbox_score, msrcnn_bbox):
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    global_root = os.path.join(output_dir, 'global_parsing')
    instance_root = os.path.join(output_dir, 'instance_parsing')
    tag_dir = os.path.join(output_dir, 'global_tag')

    if not os.path.exists(global_root):
        os.makedirs(global_root)
    if not os.path.exists(instance_root):
        os.makedirs(instance_root)
    if not os.path.exists(tag_dir):
        os.makedirs(tag_dir)

    # For visualizing indexed png image.
    palette = get_palette(256)

    fused_output = cv2.resize(fused_output, dsize=(img_width, img_height), interpolation=cv2.INTER_LINEAR)
    seg_pred = np.asarray(np.argmax(fused_output, axis=2), dtype=np.uint8)
    masks = np.load(mask_output_path)
    masks[np.where(seg_pred == 0)] = 0

    panoptic_seg_mask = masks
    seg_score_list = bbox_score

    instance_pred, class_map = get_instance(seg_pred, panoptic_seg_mask)
    refine(instance_pred, panoptic_seg_mask, seg_pred, class_map)

    compute_confidence(img_name, fused_output, class_map, instance_pred, instance_root,
                       panoptic_seg_mask, seg_score_list)

    ins_seg_results = open(os.path.join(tag_dir, os.path.splitext(img_name)[0] + '.txt'), "a")
    keep_human_id_list = list(np.unique(panoptic_seg_mask))
    if 0 in keep_human_id_list:
        keep_human_id_list.remove(0)
    for i in keep_human_id_list:
        ins_seg_results.write('{:.6f} {} {} {} {}\n'.format(seg_score_list[i - 1],
                                                            int(msrcnn_bbox[i - 1][1]), int(msrcnn_bbox[i - 1][0]),
                                                            int(msrcnn_bbox[i - 1][3]), int(msrcnn_bbox[i - 1][2])))
    ins_seg_results.close()

    output_im_global = PILImage.fromarray(seg_pred)
    output_im_instance = PILImage.fromarray(instance_pred)
    output_im_tag = PILImage.fromarray(panoptic_seg_mask)
    output_im_global.putpalette(palette)
    output_im_instance.putpalette(palette)
    output_im_tag.putpalette(palette)

    output_im_global.save(os.path.join(global_root, os.path.splitext(img_name)[0] + '.png'))
    output_im_instance.save(os.path.join(instance_root, os.path.splitext(img_name)[0] + '.png'))
    output_im_tag.save(os.path.join(tag_dir, os.path.splitext(img_name)[0] + '.png'))


def multi_process(a, args):
    img_name = a['im_name']
    img_height = a['img_height']
    img_width = a['img_width']
    msrcnn_bbox = a['person_bbox']
    bbox_score = a['person_bbox_score']

    ######### loading outputs from gloabl and local models #########
    global_output = np.load(os.path.join(args.global_output_dir, os.path.splitext(img_name)[0] + '.npy'))

    msrcnn_output = patch2img_output(args.msrcnn_output_dir, img_name, img_height, img_width, msrcnn_bbox,
                                     bbox_type='msrcnn', num_class=20)

    gt_output = patch2img_output(args.gt_output_dir, img_name, img_height, img_width, msrcnn_bbox, bbox_type='msrcnn',
                                 num_class=20)

    #### global and local branch logits fusion #####
#     fused_output = global_output + msrcnn_output + gt_output
    fused_output = global_output + gt_output


    mask_output_path = os.path.join(args.mask_output_dir, os.path.splitext(img_name)[0] + '_mask.npy')
    result_saving(fused_output, img_name, img_height, img_width, args.save_dir, mask_output_path, bbox_score, msrcnn_bbox)
    return


def main(args):
    json_file = open(args.test_json_path)
    anno = json.load(json_file)['root']

    results = joblib.Parallel(n_jobs=24, verbose=10, pre_dispatch="all")(
        [joblib.delayed(multi_process)(a, args) for i, a in enumerate(anno)]
    )


def get_arguments():
    parser = argparse.ArgumentParser(description="obtain final prediction by logits fusion")
    parser.add_argument("--test_json_path", type=str, default='./data/CIHP/cascade_152_finetune/test.json')
    parser.add_argument("--global_output_dir", type=str,
                        default='./data/CIHP/global/global_result-cihp-resnet101/global_output')
#     parser.add_argument("--msrcnn_output_dir", type=str,
#                         default='./data/CIHP/cascade_152__finetune/msrcnn_result-cihp-resnet101/msrcnn_output')
    parser.add_argument("--gt_output_dir", type=str,
                        default='./data/CIHP/cascade_152__finetune/gt_result-cihp-resnet101/gt_output')
    parser.add_argument("--mask_output_dir", type=str, default='./data/CIHP/cascade_152_finetune/mask')
    parser.add_argument("--save_dir", type=str, default='./data/CIHP/fusion_results/cihp-msrcnn_finetune')
    return parser.parse_args()


if __name__ == '__main__':
    args = get_arguments()
    main(args)