fmanux-treinado / README.md
RodrigoFlorencio's picture
Update metadata with huggingface_hub
e539662 verified
metadata
base_model: black-forest-labs/FLUX.1-schnell
license: apache-2.0
tags:
  - autotrain
  - spacerunner
  - text-to-image
  - flux
  - lora
  - diffusers
  - template:sd-lora
widget:
  - text: >-
      A realistic IPhone 15 selfie of 5 years old female FluxTManu. Ultra
      realistic. Background blur.
    output:
      url: samples/1726184803539__000001000_0.jpg
  - text: >-
      A cinematic shot of 1 year old female FluxTManu surfing a big wave in
      Thailand. Ultra realistic. Background blur
    output:
      url: samples/1726184808712__000001000_1.jpg
  - text: >-
      A photo of 1 year old female FluxTManu working in front of a computer in a
      tech company in Silicon Valley. Background blur.
    output:
      url: samples/1726184813888__000001000_2.jpg
instance_prompt: FluxTManu

fmanux-treinado

Model trained with AI Toolkit by Ostris

Prompt
A realistic IPhone 15 selfie of 5 years old female FluxTManu. Ultra realistic. Background blur.
Prompt
A cinematic shot of 1 year old female FluxTManu surfing a big wave in Thailand. Ultra realistic. Background blur
Prompt
A photo of 1 year old female FluxTManu working in front of a computer in a tech company in Silicon Valley. Background blur.

Trigger words

You should use FluxTManu to trigger the image generation.

Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, etc.

Weights for this model are available in Safetensors format.

Download them in the Files & versions tab.

Use it with the 🧨 diffusers library

from diffusers import AutoPipelineForText2Image
import torch

pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-schnell', torch_dtype=torch.bfloat16).to('cuda')
pipeline.load_lora_weights('RodrigoFlorencio/fmanux-treinado', weight_name='fmanux-treinado')
image = pipeline('A realistic IPhone 15 selfie of 5 years old female FluxTManu. Ultra realistic. Background blur.').images[0]
image.save("my_image.png")

For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers