File size: 1,908 Bytes
397cdb2 e539662 397cdb2 e539662 397cdb2 e539662 397cdb2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
---
base_model: black-forest-labs/FLUX.1-schnell
license: apache-2.0
tags:
- autotrain
- spacerunner
- text-to-image
- flux
- lora
- diffusers
- template:sd-lora
widget:
- text: A realistic IPhone 15 selfie of 5 years old female FluxTManu. Ultra realistic.
Background blur.
output:
url: samples/1726184803539__000001000_0.jpg
- text: A cinematic shot of 1 year old female FluxTManu surfing a big wave in Thailand.
Ultra realistic. Background blur
output:
url: samples/1726184808712__000001000_1.jpg
- text: A photo of 1 year old female FluxTManu working in front of a computer in a
tech company in Silicon Valley. Background blur.
output:
url: samples/1726184813888__000001000_2.jpg
instance_prompt: FluxTManu
---
# fmanux-treinado
Model trained with [AI Toolkit by Ostris](https://github.com/ostris/ai-toolkit)
<Gallery />
## Trigger words
You should use `FluxTManu` to trigger the image generation.
## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, etc.
Weights for this model are available in Safetensors format.
[Download](/RodrigoFlorencio/fmanux-treinado/tree/main) them in the Files & versions tab.
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-schnell', torch_dtype=torch.bfloat16).to('cuda')
pipeline.load_lora_weights('RodrigoFlorencio/fmanux-treinado', weight_name='fmanux-treinado')
image = pipeline('A realistic IPhone 15 selfie of 5 years old female FluxTManu. Ultra realistic. Background blur.').images[0]
image.save("my_image.png")
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
|