metadata
library_name: transformers
base_model: IVN-RIN/bioBIT
tags:
- token-classification
- generated_from_trainer
datasets:
- Rodrigo1771/drugtemist-it-75-ner
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: output
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: Rodrigo1771/drugtemist-it-75-ner
type: Rodrigo1771/drugtemist-it-75-ner
config: DrugTEMIST Italian NER
split: validation
args: DrugTEMIST Italian NER
metrics:
- name: Precision
type: precision
value: 0.914505283381364
- name: Recall
type: recall
value: 0.9215876089060987
- name: F1
type: f1
value: 0.9180327868852458
- name: Accuracy
type: accuracy
value: 0.9985847831732018
output
This model is a fine-tuned version of IVN-RIN/bioBIT on the Rodrigo1771/drugtemist-it-75-ner dataset. It achieves the following results on the evaluation set:
- Loss: 0.0080
- Precision: 0.9145
- Recall: 0.9216
- F1: 0.9180
- Accuracy: 0.9986
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.9990 | 498 | 0.0059 | 0.8588 | 0.9129 | 0.8850 | 0.9981 |
0.0135 | 2.0 | 997 | 0.0052 | 0.8778 | 0.9245 | 0.9005 | 0.9985 |
0.0036 | 2.9990 | 1495 | 0.0061 | 0.8868 | 0.9177 | 0.9020 | 0.9984 |
0.0022 | 4.0 | 1994 | 0.0059 | 0.8842 | 0.9313 | 0.9071 | 0.9985 |
0.0012 | 4.9990 | 2492 | 0.0077 | 0.8930 | 0.9206 | 0.9066 | 0.9985 |
0.0006 | 6.0 | 2991 | 0.0074 | 0.8813 | 0.9274 | 0.9038 | 0.9984 |
0.0005 | 6.9990 | 3489 | 0.0080 | 0.8949 | 0.9235 | 0.9090 | 0.9985 |
0.0002 | 8.0 | 3988 | 0.0080 | 0.9145 | 0.9216 | 0.9180 | 0.9986 |
0.0002 | 8.9990 | 4486 | 0.0087 | 0.9002 | 0.9255 | 0.9126 | 0.9986 |
0.0001 | 9.9900 | 4980 | 0.0089 | 0.9065 | 0.9197 | 0.9130 | 0.9985 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1