--- library_name: transformers base_model: IVN-RIN/bioBIT tags: - token-classification - generated_from_trainer datasets: - Rodrigo1771/drugtemist-it-75-ner metrics: - precision - recall - f1 - accuracy model-index: - name: output results: - task: name: Token Classification type: token-classification dataset: name: Rodrigo1771/drugtemist-it-75-ner type: Rodrigo1771/drugtemist-it-75-ner config: DrugTEMIST Italian NER split: validation args: DrugTEMIST Italian NER metrics: - name: Precision type: precision value: 0.914505283381364 - name: Recall type: recall value: 0.9215876089060987 - name: F1 type: f1 value: 0.9180327868852458 - name: Accuracy type: accuracy value: 0.9985847831732018 --- # output This model is a fine-tuned version of [IVN-RIN/bioBIT](https://huggingface.co/IVN-RIN/bioBIT) on the Rodrigo1771/drugtemist-it-75-ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0080 - Precision: 0.9145 - Recall: 0.9216 - F1: 0.9180 - Accuracy: 0.9986 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.9990 | 498 | 0.0059 | 0.8588 | 0.9129 | 0.8850 | 0.9981 | | 0.0135 | 2.0 | 997 | 0.0052 | 0.8778 | 0.9245 | 0.9005 | 0.9985 | | 0.0036 | 2.9990 | 1495 | 0.0061 | 0.8868 | 0.9177 | 0.9020 | 0.9984 | | 0.0022 | 4.0 | 1994 | 0.0059 | 0.8842 | 0.9313 | 0.9071 | 0.9985 | | 0.0012 | 4.9990 | 2492 | 0.0077 | 0.8930 | 0.9206 | 0.9066 | 0.9985 | | 0.0006 | 6.0 | 2991 | 0.0074 | 0.8813 | 0.9274 | 0.9038 | 0.9984 | | 0.0005 | 6.9990 | 3489 | 0.0080 | 0.8949 | 0.9235 | 0.9090 | 0.9985 | | 0.0002 | 8.0 | 3988 | 0.0080 | 0.9145 | 0.9216 | 0.9180 | 0.9986 | | 0.0002 | 8.9990 | 4486 | 0.0087 | 0.9002 | 0.9255 | 0.9126 | 0.9986 | | 0.0001 | 9.9900 | 4980 | 0.0089 | 0.9065 | 0.9197 | 0.9130 | 0.9985 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1