File size: 8,871 Bytes
e1392d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
# ranking.py
import torch
import torch.nn as nn
import torch.optim as optim
import pandas as pd
from sentence_transformers import SentenceTransformer, util
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from collections import Counter
import re
import string
from collections import Counter
from sklearn.feature_extraction.text import TfidfVectorizer
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from nltk.tokenize import word_tokenize
import spacy
def truncate_text(text, max_length=1024):
tokens = text.split()
if len(tokens) > max_length:
return ' '.join(tokens[:max_length])
return text
class RankingNN(nn.Module):
def __init__(self, input_size=7):
super(RankingNN, self).__init__()
self.fc1 = nn.Linear(input_size, 64)
self.fc2 = nn.Linear(64, 32)
self.fc3 = nn.Linear(32, 16)
self.fc4 = nn.Linear(16, 1)
self.dropout = nn.Dropout(0.2)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = self.dropout(x)
x = torch.relu(self.fc2(x))
x = self.dropout(x)
x = torch.relu(self.fc3(x))
x = self.fc4(x)
return x
transformer_model = SentenceTransformer('all-MiniLM-L6-v2')
ranking_model = RankingNN()
optimizer = optim.Adam(ranking_model.parameters(), lr=0.001, weight_decay=1e-5)
criterion = nn.MSELoss()
scaler = MinMaxScaler()
# Download necessary resources
import nltk
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('wordnet')
# Initialize resources
stop_words = set(stopwords.words('english'))
lemmatizer = WordNetLemmatizer()
nlp = spacy.load("en_core_web_sm") # Small model to keep compute low
def preprocess_text(text):
"""
Preprocess the input text by lowercasing, removing punctuation, and filtering out stopwords.
Lemmatization is applied as well.
"""
# Lowercase the text
text = text.lower()
# Remove punctuation using regex
text = re.sub(r'[' + string.punctuation + ']', ' ', text)
# Tokenize the text into words
words = word_tokenize(text)
# Lemmatize, filter out stopwords and non-alphabetic words
processed_words = [lemmatizer.lemmatize(word) for word in words if word.isalpha() and word not in stop_words]
return processed_words
def extract_named_entities(text):
"""
Extract named entities (e.g., people, organizations, locations) from the text.
"""
doc = nlp(text)
named_entities = [ent.text for ent in doc.ents if ent.label_ in {"PERSON", "ORG", "GPE", "LOC"}]
return named_entities
def extract_keywords_tfidf(corpus, text, n=5):
"""
Extract keywords from the text using TF-IDF, combined with Named Entity Recognition and lemmatization.
"""
# Preprocess the text and the entire corpus
preprocessed_texts = [' '.join(preprocess_text(doc)) for doc in corpus]
preprocessed_text = ' '.join(preprocess_text(text))
# Named entities extraction
named_entities = extract_named_entities(text)
# Use TF-IDF vectorizer to find the most important words
vectorizer = TfidfVectorizer(max_features=1000) # Keep it light, max 1000 features
X = vectorizer.fit_transform(preprocessed_texts)
# Get the feature names (i.e., the words)
feature_names = vectorizer.get_feature_names_out()
# Transform the current text into TF-IDF scores
response = vectorizer.transform([preprocessed_text])
tfidf_scores = zip(feature_names, response.toarray()[0])
# Sort by TF-IDF score
sorted_tfidf = sorted(tfidf_scores, key=lambda x: x[1], reverse=True)
# Combine top TF-IDF words with named entities for more richness
keywords = [word for word, score in sorted_tfidf[:n]]
combined_keywords = keywords + named_entities
return combined_keywords[:n]
def extract_keywords(text, corpus, n=5):
"""
Wrapper function that combines preprocessing, TF-IDF, and Named Entity Recognition to extract top N keywords.
"""
if not text.strip():
return []
# Extract keywords using the TF-IDF based approach
keywords = extract_keywords_tfidf(corpus, text, n)
# If no meaningful keywords are found, fallback to keyword frequency
if not keywords:
return extract_fallback_keywords(text, n)
return keywords
def extract_fallback_keywords(text, n=5):
"""
Fallback method to extract keywords based on word frequency in case TF-IDF or NER fails.
"""
words = preprocess_text(text)
word_freq = Counter(words)
return [word for word, _ in word_freq.most_common(n)]
def calculate_keyword_overlap(query_keywords, result_keywords):
if len(query_keywords) == 0:
return 0 # No keywords in query, so overlap is 0
return len(set(query_keywords) & set(result_keywords)) / len(query_keywords)
def train_ranking_model(query, results, corpus=None, epochs=1):
query = truncate_text(query)
if not results:
print("No results available. Skipping training.")
return []
if corpus is None:
# If no corpus is provided, use results as a fallback
corpus = [truncate_text(result['content']) for result in results if 'content' in result]
query_embedding = transformer_model.encode(query)
query_keywords = extract_keywords(query, corpus)
training_data = []
target_scores = []
for result in results:
# Truncate content
content = truncate_text(result['content'])
content_embedding = transformer_model.encode(content)
# Handle missing 'title' and 'meta' fields with default values, and truncate
title = truncate_text(result.get('title', ''))
title_embedding = transformer_model.encode(title)
meta_description = truncate_text(result.get('meta', {}).get('description', ''))
meta_description_embedding = transformer_model.encode(meta_description)
content_similarity = util.pytorch_cos_sim(query_embedding, content_embedding).item()
title_similarity = util.pytorch_cos_sim(query_embedding, title_embedding).item()
meta_description_similarity = util.pytorch_cos_sim(query_embedding, meta_description_embedding).item()
# Handle missing metadata by providing default values
content_length = result.get('meta', {}).get('content_length', 0)
total_links = result.get('meta', {}).get('total_links', 0)
result_keywords = extract_keywords(content, corpus)
keyword_overlap = calculate_keyword_overlap(query_keywords, result_keywords)
domain_authority = get_domain_authority(result.get('link', ''))
features = [
content_similarity, title_similarity, meta_description_similarity,
content_length, total_links, keyword_overlap, domain_authority
]
training_data.append(features)
target_score = (0.4 * content_similarity + 0.3 * title_similarity +
0.2 * meta_description_similarity + 0.1 * keyword_overlap)
target_scores.append(target_score)
# Normalize features
training_data = scaler.fit_transform(training_data)
training_data_tensor = torch.tensor(training_data, dtype=torch.float32)
target_scores_tensor = torch.tensor(target_scores, dtype=torch.float32).unsqueeze(1)
# Training loop
for epoch in range(epochs):
optimizer.zero_grad()
predicted_scores = ranking_model(training_data_tensor)
loss = criterion(predicted_scores, target_scores_tensor)
loss.backward()
optimizer.step()
if (epoch + 1) % 5 == 0:
print(f"Epoch {epoch+1}/{epochs}, Loss: {loss.item():.4f}")
# Predict final scores and rank results
with torch.no_grad():
final_scores = ranking_model(training_data_tensor).squeeze().tolist()
# Ensure final_scores is always a list
if isinstance(final_scores, float):
final_scores = [final_scores]
for result, score in zip(results, final_scores):
result['predicted_score'] = score
ranked_results = sorted(results, key=lambda x: x['predicted_score'], reverse=True)
return ranked_results
def get_domain_authority(url):
# Placeholder function - replace with actual domain authority data if available
high_authority_domains = ['arxiv.org', 'ncbi.nlm.nih.gov', 'nature.com', 'science.org']
medium_authority_domains = ['wikipedia.org', 'stackexchange.com', 'github.com']
for domain in high_authority_domains:
if domain in url:
return 1.0
for domain in medium_authority_domains:
if domain in url:
return 0.7
return 0.5 |