File size: 19,182 Bytes
8e083dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch.nn import functional as F
import math
import os
import numpy as np
import time
from torch.utils.data import Dataset, DataLoader
import matplotlib.pyplot as plt
from torch.optim.lr_scheduler import ReduceLROnPlateau
import random
from collections import defaultdict
from torch.cuda.amp import autocast
from typing import List, Tuple
from torch.nn.utils.rnn import pad_sequence
import inspect
# Define your dataset and dataloader classes
class NpyDataset(Dataset):
def __init__(self, data_dir, file_prefix):
self.data_dir = data_dir
self.file_names = [os.path.join(data_dir, f) for f in sorted(os.listdir(data_dir)) if f.startswith(file_prefix) and f.endswith('.npy')]
def __len__(self):
return len(self.file_names)
def __getitem__(self, idx):
tokens_np = np.load(self.file_names[idx])
tokens_tensor = torch.tensor(tokens_np, dtype=torch.long)
return tokens_tensor
class CustomDataLoaderLite:
def __init__(self, dataset, batch_size, seq_len):
self.dataset = dataset
self.batch_size = batch_size
self.seq_len = seq_len
self.current_position = 0
def __iter__(self):
self.current_position = 0
return self
def __next__(self):
if self.current_position >= len(self.dataset):
raise StopIteration
batch = []
for _ in range(self.batch_size):
if self.current_position >= len(self.dataset):
break
tokens = self.dataset[self.current_position]
batch.append(tokens[:self.seq_len])
self.current_position += 1
x = torch.stack([tokens[:-1] for tokens in batch])
y = torch.stack([tokens[1:] for tokens in batch])
return x, y
def __len__(self):
return (len(self.dataset) + self.batch_size - 1) // self.batch_size
# Define the FlashAttention3 module
class FlashAttention3(nn.Module):
def __init__(self, d_model, n_heads, block_size_q, block_size_kv, num_blocks_kv, device='cuda'):
super(FlashAttention3, self).__init__()
self.d_model = d_model
self.n_heads = n_heads
self.block_size_q = block_size_q
self.block_size_kv = block_size_kv
self.num_blocks_kv = num_blocks_kv
self.device = device
self.q_proj = nn.Linear(d_model, d_model).to(device)
self.k_proj = nn.Linear(d_model, d_model).to(device)
self.v_proj = nn.Linear(d_model, d_model).to(device)
self.out_proj = nn.Linear(d_model, d_model).to(device)
def forward(self, x):
B, T, C = x.size()
Q = self.q_proj(x).view(B, T, self.n_heads, C // self.n_heads).transpose(1, 2)
K = self.k_proj(x).view(B, T, self.n_heads, C // self.n_heads).transpose(1, 2)
V = self.v_proj(x).view(B, T, self.n_heads, C // self.n_heads).transpose(1, 2)
O = torch.zeros(B, self.n_heads, T, C // self.n_heads).to(self.device)
L = torch.zeros(B, self.n_heads, T).to(self.device)
M = torch.full((B, self.n_heads, T), -float('inf')).to(self.device)
for i in range(0, T, self.block_size_q):
Q_block = Q[:, :, i:i+self.block_size_q]
O_block = torch.zeros_like(Q_block).to(self.device)
L_block = torch.zeros(B, self.n_heads, Q_block.size(2)).to(self.device)
M_block = torch.full((B, self.n_heads, Q_block.size(2)), -float('inf')).to(self.device)
for j in range(0, T, self.block_size_kv):
K_block = K[:, :, j:j+self.block_size_kv]
V_block = V[:, :, j:j+self.block_size_kv]
S_block = torch.matmul(Q_block, K_block.transpose(-2, -1))
M_block_old = M_block
M_block = torch.max(M_block, S_block.max(dim=-1).values)
exp_S_block = torch.exp(S_block - M_block.unsqueeze(-1))
L_block = torch.exp(M_block_old - M_block) * L_block + exp_S_block.sum(dim=-1)
O_block += torch.matmul(exp_S_block, V_block)
O_block /= L_block.unsqueeze(-1)
O[:, :, i:i+self.block_size_q] = O_block
O = O.transpose(1, 2).contiguous().view(B, T, self.n_heads * (C // self.n_heads))
O = self.out_proj(O)
return O
# Define the MLP module
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
self.gelu = nn.GELU(approximate='tanh')
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
self.dropout = nn.Dropout(config.dropout)
self.c_proj.scale_init = 1
def forward(self, x):
x = self.c_fc(x)
x = self.gelu(x)
x = self.c_proj(x)
x = self.dropout(x)
return x
# Define the MixtureOfExperts module
class MixtureOfExperts(nn.Module):
def __init__(self, config, num_experts, expert_layers):
super().__init__()
self.num_experts = num_experts
self.expert_layers = expert_layers
self.experts = nn.ModuleList([self._create_expert(config) for _ in range(num_experts)])
self.gate = nn.Linear(config.n_embd, num_experts)
def _create_expert(self, config):
layers = []
for _ in range(self.expert_layers):
layers.append(FlashAttention3(d_model=config.n_embd, n_heads=config.n_head, block_size_q=32, block_size_kv=32, num_blocks_kv=4))
layers.append(nn.LayerNorm(config.n_embd))
layers.append(MLP(config))
return nn.Sequential(*layers)
def forward(self, x):
B, T, C = x.size()
gate_scores = self.gate(x)
gate_probs = F.softmax(gate_scores, dim=-1)
expert_outputs = torch.stack([expert(x) for expert in self.experts], dim=1)
gate_probs = gate_probs.unsqueeze(-1)
gate_probs = gate_probs.permute(0, 2, 1, 3)
output = torch.sum(gate_probs * expert_outputs, dim=1)
return output
# Define the BlockWithMoE module
class BlockWithMoE(nn.Module):
def __init__(self, config, num_experts=4, expert_layers=2, block_size_q=32, block_size_kv=32, num_blocks_kv=4, device='cuda'):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd)
self.attn = FlashAttention3(d_model=config.n_embd, n_heads=config.n_head, block_size_q=block_size_q, block_size_kv=block_size_kv, num_blocks_kv=num_blocks_kv, device=device)
self.dropout1 = nn.Dropout(config.dropout)
self.ln_2 = nn.LayerNorm(config.n_embd)
self.moe = MixtureOfExperts(config, num_experts, expert_layers)
self.dropout2 = nn.Dropout(config.dropout)
self.ln_3 = nn.LayerNorm(config.n_embd)
self.mlp = MLP(config)
self.dropout3 = nn.Dropout(config.dropout)
def forward(self, x):
B, T, C = x.size()
attn_output = self.attn(x)
x = x + attn_output
x = self.dropout1(x)
x = x + self.moe(self.ln_2(x))
x = self.dropout2(x)
x = x + self.mlp(self.ln_3(x))
x = self.dropout3(x)
return x
# Define the GPT configuration dataclass
@dataclass
class GPTConfig:
block_size: int = 512
vocab_size: int = 50257
n_layer: int = 6
n_head: int = 4
n_embd: int = 256
dropout: float = 0.2
# Define the GPTWithMoE model
class GPTWithMoE(nn.Module):
def __init__(self, config, num_experts=2, expert_layers=2, block_size_q=32, block_size_kv=32, num_blocks_kv=4, device='cuda'):
super().__init__()
self.config = config
self.transformer = nn.ModuleDict(dict(
wte=nn.Embedding(config.vocab_size, config.n_embd),
wpe=nn.Embedding(config.block_size, config.n_embd),
h=nn.ModuleList([BlockWithMoE(config, num_experts, expert_layers, block_size_q, block_size_kv, num_blocks_kv, device) for _ in range(config.n_layer)]),
ln_f=nn.LayerNorm(config.n_embd),
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.transformer.wte.weight = self.lm_head.weight
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
std = 0.02
if hasattr(module, 'scale_init'):
std *= (2 * self.config.n_layer) ** -0.5
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
B, T = idx.size()
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
pos = torch.arange(0, T, dtype=torch.long, device=idx.device)
pos_emb = self.transformer.wpe(pos)
tok_emb = self.transformer.wte(idx)
x = tok_emb + pos_emb
for block in self.transformer.h:
x = block(x)
x = self.transformer.ln_f(x)
logits = self.lm_head(x)
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
return logits, loss
def configure_optimizers(self, weight_decay, learning_rate, device):
param_dict = {pn: p for pn, p in self.named_parameters() if p.requires_grad}
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
non_decay_params = [p for n, p in param_dict.items() if p.dim() < 2]
optim_groups = [
{'params': decay_params, 'weight_decay': weight_decay},
{'params': non_decay_params, 'weight_decay': 0}
]
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
use_fused = fused_available and 'cuda' in device
print(f" Using fused AdamW: {use_fused}")
optimizer = torch.optim.AdamW(self.parameters(), lr=learning_rate, betas=(0.9, 0.95), eps=1e-8, fused=use_fused)
return optimizer
# MCTS Implementation
@dataclass
class MCTSNode:
state: torch.Tensor
parent: 'MCTSNode' = None
children: dict = None
visits: int = 0
value: float = 0.0
def __post_init__(self):
if self.children is None:
self.children = {}
# Define scriptable functions separately
def select_node(node: MCTSNode, c_puct: float) -> MCTSNode:
if not node.children:
return node
scores = torch.tensor([
child.value / (child.visits + 1e-8) +
c_puct * math.sqrt(math.log(node.visits + 1) / (child.visits + 1e-8))
for child in node.children.values()
])
best_child_idx = torch.argmax(scores).item()
return list(node.children.values())[best_child_idx]
def expand_node(node: MCTSNode, logits: torch.Tensor, top_k: int) -> None:
probs = F.softmax(logits, dim=-1)
top_k_probs, top_k_indices = torch.topk(probs, k=top_k)
for prob, token in zip(top_k_probs, top_k_indices):
if token.item() not in node.children:
node.children[token.item()] = MCTSNode(state=token, parent=node)
def simulate(model: torch.nn.Module, sequence: torch.Tensor, max_length: int) -> torch.Tensor:
# Ensure sequence is 2D
if sequence.dim() == 1:
sequence = sequence.unsqueeze(0)
with torch.no_grad():
while sequence.size(1) < max_length:
with autocast():
logits, _ = model(sequence)
probs = F.softmax(logits[0, -1], dim=-1)
next_token = torch.multinomial(probs, 1)
sequence = torch.cat([sequence, next_token.unsqueeze(0)], dim=1)
return sequence.squeeze(0)
def backpropagate(node: MCTSNode, value: float) -> None:
while node is not None:
node.visits += 1
node.value += value
node = node.parent
def mcts_decode_single(model: torch.nn.Module, input_ids: torch.Tensor, max_length: int, num_simulations: int, c_puct: float, top_k: int) -> torch.Tensor:
# Ensure input_ids is 2D
if input_ids.dim() == 1:
input_ids = input_ids.unsqueeze(0)
root = MCTSNode(state=input_ids)
for _ in range(num_simulations):
node = root
current_input = input_ids.clone()
# Selection
while node.children and current_input.size(1) < max_length:
node = select_node(node, c_puct)
current_input = torch.cat([current_input, node.state.unsqueeze(0).unsqueeze(0)], dim=1)
# Expansion
if current_input.size(1) < max_length:
with torch.no_grad():
with autocast():
logits, _ = model(current_input)
expand_node(node, logits[0, -1], top_k)
# Simulation
simulation_sequence = simulate(model, current_input.squeeze(0), max_length)
# Evaluation
with torch.no_grad():
with autocast():
_, loss = model(simulation_sequence.unsqueeze(0), simulation_sequence.unsqueeze(0))
value = -loss.item()
# Backpropagation
backpropagate(node, value)
# Choose the best next token
best_child = max(root.children.values(), key=lambda n: n.visits)
result = torch.cat([input_ids.squeeze(0), best_child.state.unsqueeze(0)], dim=0)
# Ensure the result doesn't exceed max_length
return result[:max_length]
def mcts_decode_batch(model: torch.nn.Module, input_ids_list: List[torch.Tensor], max_length: int, num_simulations: int, c_puct: float, top_k: int) -> List[torch.Tensor]:
return [mcts_decode_single(model, input_ids.unsqueeze(0) if input_ids.dim() == 1 else input_ids, max_length, num_simulations, c_puct, top_k) for input_ids in input_ids_list]
def validate_with_mcts(model: torch.nn.Module, val_dataloader: CustomDataLoaderLite, device: torch.device, max_length: int, num_simulations: int, c_puct: float, top_k: int) -> float:
model.eval()
total_loss = 0.0
num_batches = 0
with torch.no_grad():
for x, y in val_dataloader:
x, y = x.to(device), y.to(device)
# Use MCTS for decoding
decoded_sequences = mcts_decode_batch(model, x, max_length, num_simulations, c_puct, top_k)
# Pad sequences to the same length
decoded_sequences_padded = pad_sequence(decoded_sequences, batch_first=True, padding_value=0)
# Trim the decoded sequences to match the target length
decoded_sequences_trimmed = decoded_sequences_padded[:, :y.size(1)]
# Calculate loss using the MCTS-decoded sequences
with autocast():
logits, loss = model(decoded_sequences_trimmed, y)
total_loss += loss.item()
num_batches += 1
return total_loss / num_batches if num_batches > 0 else 0.0
def train_model():
device = 'cpu'
if torch.cuda.is_available():
device = 'cuda'
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
device = 'mps'
print(f"using device : {device}")
# Load the dataset and create the data loader
print("Loading datasets...")
train_dataset = NpyDataset('edu_fineweb10B', 'edufineweb_train')
val_dataset = NpyDataset('edu_fineweb10B', 'edufineweb_val')
train_dataloader = CustomDataLoaderLite(train_dataset, batch_size=12, seq_len=512)
val_dataloader = CustomDataLoaderLite(val_dataset, batch_size=12, seq_len=512)
# Training loop
max_steps = 200
total_batch_size = 262144
B = 12
T = 512
grad_accum_steps = total_batch_size // (B * T)
# Set up the configuration
print("Setting up model configuration...")
config = GPTConfig(vocab_size=50304, block_size=512, n_layer=6, n_head=4, n_embd=256)
# Initialize the model
print("Initializing model...")
model = GPTWithMoE(config, num_experts=3, expert_layers=3, block_size_q=32, block_size_kv=32, num_blocks_kv=4, device=device)
model.to(device)
# Load the saved model weights if they exist
save_path = "C:\\Users\\Admin\\MODELS\\moe_mcts_new.pt"
temp_save_path = "C:\\Users\\Admin\\MODELS\\moe_mcts_temp_new.pt"
if os.path.isfile(save_path):
print(f"Loading model weights from {save_path}...")
model.load_state_dict(torch.load(save_path))
print(f"Loaded model weights from {save_path}")
print("Configuring optimizer...")
optimizer = model.configure_optimizers(weight_decay=0.2, learning_rate=3e-3, device=device)
scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10, verbose=True)
train_losses = []
val_losses = []
scaler = torch.cuda.amp.GradScaler()
for i in range(max_steps):
t0 = time.time()
optimizer.zero_grad()
train_loss_accum = 0
model.train()
print(f"Training step {i + 1}/{max_steps}...")
for x, y in train_dataloader:
x, y = x.to(device), y.to(device)
with torch.cuda.amp.autocast():
logits, loss = model(x, y)
loss = loss / grad_accum_steps
train_loss_accum += loss.detach()
scaler.scale(loss).backward()
norm = torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
scaler.step(optimizer)
scaler.update()
torch.cuda.synchronize()
t1 = time.time()
dt = (t1 - t0) * 1000
tokens_per_sec = (B * T * grad_accum_steps) / (t1 - t0)
train_losses.append(train_loss_accum.item())
torch.cuda.empty_cache()
# Validation with MCTS
model.eval()
val_loss = validate_with_mcts(model, val_dataloader, device, max_length=T, num_simulations=100, c_puct=1.0, top_k=10)
val_losses.append(val_loss)
scheduler.step(val_loss)
print(f"step {i} | train loss: {train_loss_accum.item():.6f} | val loss: {val_loss:.6f} | lr: {optimizer.param_groups[0]['lr']:.8f} | norm: {norm:.4f} | dt: {dt:.2f}ms | tok/sec: {tokens_per_sec}")
# Save model weights
torch.save(model.state_dict(), temp_save_path)
os.replace(temp_save_path, save_path)
print(f"Model saved at step {i+1} to {save_path}")
# Plotting the training and validation loss
plt.figure(figsize=(10, 5))
plt.plot(train_losses, label='Training Loss')
plt.plot(val_losses, label='Validation Loss')
plt.xlabel('Steps')
plt.ylabel('Loss')
plt.legend()
plt.show()
if __name__ == "__main__":
train_model()
|