File size: 1,237 Bytes
d942758 9ecb0be d942758 9ecb0be c99dd69 9ecb0be d4abdfe 5d8e0fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
---
license: mit
datasets:
- competitions/aiornot
language:
- en
metrics:
- accuracy
tags:
- classification
- computer vision
---
## Usage:
Follow the following code example to use this model.
```python
# import libraries
from transformers import AutoModel, AutoModelForImageClassification
import torch
from datasets import load_dataset
# load dataset
dataset = load_dataset("competitions/aiornot")
# list of images
images = dataset["test"][10:20]["image"]
# load models
feature_extractor = AutoModel.from_pretrained(
"RishiDarkDevil/ai-image-det-resnet152", trust_remote_code=True).to('cuda')
classifier = AutoModelForImageClassification.from_pretrained(
"RishiDarkDevil/ai-image-det-resnet152", trust_remote_code=True).to('cuda')
# extract features from images
inputs = feature_extractor(images)
# classification using extracted features
with torch.no_grad():
logits = classifier(inputs)['logits']
# model predicts one of the 2 classes
predicted_label = logits.argmax(-1)
# predictions
print(predicted_label) # 0 is Not AI, 1 is AI
```
**Backbone for Feature Extraction: ResNet152**
### Performance
- Trained MLP Fine-tuning layers for 150 epochs.
- Accuracy: 0.9250 on validation data (~5% of the training data). |