Object Detection
File size: 9,126 Bytes
67bb36a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import torch.nn as nn
import torch
from .general import bbox_iou
from .postprocess import build_targets
from lib.core.evaluate import SegmentationMetric

class MultiHeadLoss(nn.Module):
    """
    collect all the loss we need
    """
    def __init__(self, losses, cfg, lambdas=None):
        """
        Inputs:
        - losses: (list)[nn.Module, nn.Module, ...]
        - cfg: config object
        - lambdas: (list) + IoU loss, weight for each loss
        """
        super().__init__()
        # lambdas: [cls, obj, iou, la_seg, ll_seg, ll_iou]
        if not lambdas:
            lambdas = [1.0 for _ in range(len(losses) + 3)]
        assert all(lam >= 0.0 for lam in lambdas)

        self.losses = nn.ModuleList(losses)
        self.lambdas = lambdas
        self.cfg = cfg

    def forward(self, head_fields, head_targets, shapes, model):
        """
        Inputs:
        - head_fields: (list) output from each task head
        - head_targets: (list) ground-truth for each task head
        - model:

        Returns:
        - total_loss: sum of all the loss
        - head_losses: (tuple) contain all loss[loss1, loss2, ...]

        """
        # head_losses = [ll
        #                 for l, f, t in zip(self.losses, head_fields, head_targets)
        #                 for ll in l(f, t)]
        #
        # assert len(self.lambdas) == len(head_losses)
        # loss_values = [lam * l
        #                for lam, l in zip(self.lambdas, head_losses)
        #                if l is not None]
        # total_loss = sum(loss_values) if loss_values else None
        # print(model.nc)
        total_loss, head_losses = self._forward_impl(head_fields, head_targets, shapes, model)

        return total_loss, head_losses

    def _forward_impl(self, predictions, targets, shapes, model):
        """

        Args:
            predictions: predicts of [[det_head1, det_head2, det_head3], drive_area_seg_head, lane_line_seg_head]
            targets: gts [det_targets, segment_targets, lane_targets]
            model:

        Returns:
            total_loss: sum of all the loss
            head_losses: list containing losses

        """
        cfg = self.cfg
        device = targets[0].device
        lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
        tcls, tbox, indices, anchors = build_targets(cfg, predictions[0], targets[0], model)  # targets

        # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
        cp, cn = smooth_BCE(eps=0.0)

        BCEcls, BCEobj, BCEseg = self.losses

        # Calculate Losses
        nt = 0  # number of targets
        no = len(predictions[0])  # number of outputs
        balance = [4.0, 1.0, 0.4] if no == 3 else [4.0, 1.0, 0.4, 0.1]  # P3-5 or P3-6

        # calculate detection loss
        for i, pi in enumerate(predictions[0]):  # layer index, layer predictions
            b, a, gj, gi = indices[i]  # image, anchor, gridy, gridx
            tobj = torch.zeros_like(pi[..., 0], device=device)  # target obj

            n = b.shape[0]  # number of targets
            if n:
                nt += n  # cumulative targets
                ps = pi[b, a, gj, gi]  # prediction subset corresponding to targets

                # Regression
                pxy = ps[:, :2].sigmoid() * 2. - 0.5
                pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
                pbox = torch.cat((pxy, pwh), 1).to(device)  # predicted box
                iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True)  # iou(prediction, target)
                lbox += (1.0 - iou).mean()  # iou loss

                # Objectness
                tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * iou.detach().clamp(0).type(tobj.dtype)  # iou ratio

                # Classification
                # print(model.nc)
                if model.nc > 1:  # cls loss (only if multiple classes)
                    t = torch.full_like(ps[:, 5:], cn, device=device)  # targets
                    t[range(n), tcls[i]] = cp
                    lcls += BCEcls(ps[:, 5:], t)  # BCE
            lobj += BCEobj(pi[..., 4], tobj) * balance[i]  # obj loss

        drive_area_seg_predicts = predictions[1].view(-1)
        drive_area_seg_targets = targets[1].view(-1)
        lseg_da = BCEseg(drive_area_seg_predicts, drive_area_seg_targets)

        lane_line_seg_predicts = predictions[2].view(-1)
        lane_line_seg_targets = targets[2].view(-1)
        lseg_ll = BCEseg(lane_line_seg_predicts, lane_line_seg_targets)

        metric = SegmentationMetric(2)
        nb, _, height, width = targets[1].shape
        pad_w, pad_h = shapes[0][1][1]
        pad_w = int(pad_w)
        pad_h = int(pad_h)
        _,lane_line_pred=torch.max(predictions[2], 1)
        _,lane_line_gt=torch.max(targets[2], 1)
        lane_line_pred = lane_line_pred[:, pad_h:height-pad_h, pad_w:width-pad_w]
        lane_line_gt = lane_line_gt[:, pad_h:height-pad_h, pad_w:width-pad_w]
        metric.reset()
        metric.addBatch(lane_line_pred.cpu(), lane_line_gt.cpu())
        IoU = metric.IntersectionOverUnion()
        liou_ll = 1 - IoU

        s = 3 / no  # output count scaling
        lcls *= cfg.LOSS.CLS_GAIN * s * self.lambdas[0]
        lobj *= cfg.LOSS.OBJ_GAIN * s * (1.4 if no == 4 else 1.) * self.lambdas[1]
        lbox *= cfg.LOSS.BOX_GAIN * s * self.lambdas[2]

        lseg_da *= cfg.LOSS.DA_SEG_GAIN * self.lambdas[3]
        lseg_ll *= cfg.LOSS.LL_SEG_GAIN * self.lambdas[4]
        liou_ll *= cfg.LOSS.LL_IOU_GAIN * self.lambdas[5]

        
        if cfg.TRAIN.DET_ONLY or cfg.TRAIN.ENC_DET_ONLY or cfg.TRAIN.DET_ONLY:
            lseg_da = 0 * lseg_da
            lseg_ll = 0 * lseg_ll
            liou_ll = 0 * liou_ll
            
        if cfg.TRAIN.SEG_ONLY or cfg.TRAIN.ENC_SEG_ONLY:
            lcls = 0 * lcls
            lobj = 0 * lobj
            lbox = 0 * lbox

        if cfg.TRAIN.LANE_ONLY:
            lcls = 0 * lcls
            lobj = 0 * lobj
            lbox = 0 * lbox
            lseg_da = 0 * lseg_da

        if cfg.TRAIN.DRIVABLE_ONLY:
            lcls = 0 * lcls
            lobj = 0 * lobj
            lbox = 0 * lbox
            lseg_ll = 0 * lseg_ll
            liou_ll = 0 * liou_ll

        loss = lbox + lobj + lcls + lseg_da + lseg_ll + liou_ll
        # loss = lseg
        # return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
        return loss, (lbox.item(), lobj.item(), lcls.item(), lseg_da.item(), lseg_ll.item(), liou_ll.item(), loss.item())


def get_loss(cfg, device):
    """
    get MultiHeadLoss

    Inputs:
    -cfg: configuration use the loss_name part or 
          function part(like regression classification)
    -device: cpu or gpu device

    Returns:
    -loss: (MultiHeadLoss)

    """
    # class loss criteria
    BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([cfg.LOSS.CLS_POS_WEIGHT])).to(device)
    # object loss criteria
    BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([cfg.LOSS.OBJ_POS_WEIGHT])).to(device)
    # segmentation loss criteria
    BCEseg = nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([cfg.LOSS.SEG_POS_WEIGHT])).to(device)
    # Focal loss
    gamma = cfg.LOSS.FL_GAMMA  # focal loss gamma
    if gamma > 0:
        BCEcls, BCEobj = FocalLoss(BCEcls, gamma), FocalLoss(BCEobj, gamma)

    loss_list = [BCEcls, BCEobj, BCEseg]
    loss = MultiHeadLoss(loss_list, cfg=cfg, lambdas=cfg.LOSS.MULTI_HEAD_LAMBDA)
    return loss

# example
# class L1_Loss(nn.Module)


def smooth_BCE(eps=0.1):  # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
    # return positive, negative label smoothing BCE targets
    return 1.0 - 0.5 * eps, 0.5 * eps


class FocalLoss(nn.Module):
    # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
    def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
        # alpha  balance positive & negative samples
        # gamma  focus on difficult samples
        super(FocalLoss, self).__init__()
        self.loss_fcn = loss_fcn  # must be nn.BCEWithLogitsLoss()
        self.gamma = gamma
        self.alpha = alpha
        self.reduction = loss_fcn.reduction
        self.loss_fcn.reduction = 'none'  # required to apply FL to each element

    def forward(self, pred, true):
        loss = self.loss_fcn(pred, true)
        # p_t = torch.exp(-loss)
        # loss *= self.alpha * (1.000001 - p_t) ** self.gamma  # non-zero power for gradient stability

        # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
        pred_prob = torch.sigmoid(pred)  # prob from logits
        p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
        alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
        modulating_factor = (1.0 - p_t) ** self.gamma
        loss *= alpha_factor * modulating_factor

        if self.reduction == 'mean':
            return loss.mean()
        elif self.reduction == 'sum':
            return loss.sum()
        else:  # 'none'
            return loss