Object Detection
File size: 23,152 Bytes
67bb36a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
import time
from lib.core.evaluate import ConfusionMatrix,SegmentationMetric
from lib.core.general import non_max_suppression,check_img_size,scale_coords,xyxy2xywh,xywh2xyxy,box_iou,coco80_to_coco91_class,plot_images,ap_per_class,output_to_target
from lib.utils.utils import time_synchronized
from lib.utils import plot_img_and_mask,plot_one_box,show_seg_result
import torch
from threading import Thread
import numpy as np
from PIL import Image
from torchvision import transforms
from pathlib import Path
import json
import random
import cv2
import os
import math
from torch.cuda import amp
from tqdm import tqdm


def train(cfg, train_loader, model, criterion, optimizer, scaler, epoch, num_batch, num_warmup,
          writer_dict, logger, device, rank=-1):
    """
    train for one epoch

    Inputs:
    - config: configurations 
    - train_loader: loder for data
    - model: 
    - criterion: (function) calculate all the loss, return total_loss, head_losses
    - writer_dict:
    outputs(2,)
    output[0] len:3, [1,3,32,32,85], [1,3,16,16,85], [1,3,8,8,85]
    output[1] len:1, [2,256,256]
    output[2] len:1, [2,256,256]
    target(2,)
    target[0] [1,n,5]
    target[1] [2,256,256]
    target[2] [2,256,256]
    Returns:
    None

    """
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()

    # switch to train mode
    model.train()
    start = time.time()
    for i, (input, target, paths, shapes) in enumerate(train_loader):
        intermediate = time.time()
        #print('tims:{}'.format(intermediate-start))
        num_iter = i + num_batch * (epoch - 1)

        if num_iter < num_warmup:
            # warm up
            lf = lambda x: ((1 + math.cos(x * math.pi / cfg.TRAIN.END_EPOCH)) / 2) * \
                           (1 - cfg.TRAIN.LRF) + cfg.TRAIN.LRF  # cosine
            xi = [0, num_warmup]
            # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
            for j, x in enumerate(optimizer.param_groups):
                # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                x['lr'] = np.interp(num_iter, xi, [cfg.TRAIN.WARMUP_BIASE_LR if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
                if 'momentum' in x:
                    x['momentum'] = np.interp(num_iter, xi, [cfg.TRAIN.WARMUP_MOMENTUM, cfg.TRAIN.MOMENTUM])

        data_time.update(time.time() - start)
        if not cfg.DEBUG:
            input = input.to(device, non_blocking=True)
            assign_target = []
            for tgt in target:
                assign_target.append(tgt.to(device))
            target = assign_target
        with amp.autocast(enabled=device.type != 'cpu'):
            outputs = model(input)
            total_loss, head_losses = criterion(outputs, target, shapes,model)
            # print(head_losses)

        # compute gradient and do update step
        optimizer.zero_grad()
        scaler.scale(total_loss).backward()
        scaler.step(optimizer)
        scaler.update()

        if rank in [-1, 0]:
            # measure accuracy and record loss
            losses.update(total_loss.item(), input.size(0))

            # _, avg_acc, cnt, pred = accuracy(output.detach().cpu().numpy(),
            #                                  target.detach().cpu().numpy())
            # acc.update(avg_acc, cnt)

            # measure elapsed time
            batch_time.update(time.time() - start)
            end = time.time()
            if i % cfg.PRINT_FREQ == 0:
                msg = 'Epoch: [{0}][{1}/{2}]\t' \
                      'Time {batch_time.val:.3f}s ({batch_time.avg:.3f}s)\t' \
                      'Speed {speed:.1f} samples/s\t' \
                      'Data {data_time.val:.3f}s ({data_time.avg:.3f}s)\t' \
                      'Loss {loss.val:.5f} ({loss.avg:.5f})'.format(
                          epoch, i, len(train_loader), batch_time=batch_time,
                          speed=input.size(0)/batch_time.val,
                          data_time=data_time, loss=losses)
                logger.info(msg)

                writer = writer_dict['writer']
                global_steps = writer_dict['train_global_steps']
                writer.add_scalar('train_loss', losses.val, global_steps)
                # writer.add_scalar('train_acc', acc.val, global_steps)
                writer_dict['train_global_steps'] = global_steps + 1


def validate(epoch,config, val_loader, val_dataset, model, criterion, output_dir,
             tb_log_dir, writer_dict=None, logger=None, device='cpu', rank=-1):
    """
    validata

    Inputs:
    - config: configurations 
    - train_loader: loder for data
    - model: 
    - criterion: (function) calculate all the loss, return 
    - writer_dict: 

    Return:
    None
    """
    # setting
    max_stride = 32
    weights = None

    save_dir = output_dir + os.path.sep + 'visualization'
    if not os.path.exists(save_dir):
        os.mkdir(save_dir)

    # print(save_dir)
    _, imgsz = [check_img_size(x, s=max_stride) for x in config.MODEL.IMAGE_SIZE] #imgsz is multiple of max_stride
    batch_size = config.TRAIN.BATCH_SIZE_PER_GPU * len(config.GPUS)
    test_batch_size = config.TEST.BATCH_SIZE_PER_GPU * len(config.GPUS)
    training = False
    is_coco = False #is coco dataset
    save_conf=False # save auto-label confidences
    verbose=False
    save_hybrid=False
    log_imgs,wandb = min(16,100), None

    nc = 1
    iouv = torch.linspace(0.5,0.95,10).to(device)     #iou vector for mAP@0.5:0.95
    niou = iouv.numel()

    try:
        import wandb
    except ImportError:
        wandb = None
        log_imgs = 0

    seen =  0 
    confusion_matrix = ConfusionMatrix(nc=model.nc) #detector confusion matrix
    da_metric = SegmentationMetric(config.num_seg_class) #segment confusion matrix    
    ll_metric = SegmentationMetric(2) #segment confusion matrix

    names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
    coco91class = coco80_to_coco91_class()
    
    s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
    p, r, f1, mp, mr, map50, map, t_inf, t_nms = 0., 0., 0., 0., 0., 0., 0., 0., 0.
    
    losses = AverageMeter()

    da_acc_seg = AverageMeter()
    da_IoU_seg = AverageMeter()
    da_mIoU_seg = AverageMeter()

    ll_acc_seg = AverageMeter()
    ll_IoU_seg = AverageMeter()
    ll_mIoU_seg = AverageMeter()

    T_inf = AverageMeter()
    T_nms = AverageMeter()

    # switch to train mode
    model.eval()
    jdict, stats, ap, ap_class, wandb_images = [], [], [], [], []

    for batch_i, (img, target, paths, shapes) in tqdm(enumerate(val_loader), total=len(val_loader)):
        if not config.DEBUG:
            img = img.to(device, non_blocking=True)
            assign_target = []
            for tgt in target:
                assign_target.append(tgt.to(device))
            target = assign_target
            nb, _, height, width = img.shape    #batch size, channel, height, width

        with torch.no_grad():
            pad_w, pad_h = shapes[0][1][1]
            pad_w = int(pad_w)
            pad_h = int(pad_h)
            ratio = shapes[0][1][0][0]

            t = time_synchronized()
            det_out, da_seg_out, ll_seg_out= model(img)
            t_inf = time_synchronized() - t
            if batch_i > 0:
                T_inf.update(t_inf/img.size(0),img.size(0))

            inf_out,train_out = det_out

            #driving area segment evaluation
            _,da_predict=torch.max(da_seg_out, 1)
            _,da_gt=torch.max(target[1], 1)
            da_predict = da_predict[:, pad_h:height-pad_h, pad_w:width-pad_w]
            da_gt = da_gt[:, pad_h:height-pad_h, pad_w:width-pad_w]

            da_metric.reset()
            da_metric.addBatch(da_predict.cpu(), da_gt.cpu())
            da_acc = da_metric.pixelAccuracy()
            da_IoU = da_metric.IntersectionOverUnion()
            da_mIoU = da_metric.meanIntersectionOverUnion()

            da_acc_seg.update(da_acc,img.size(0))
            da_IoU_seg.update(da_IoU,img.size(0))
            da_mIoU_seg.update(da_mIoU,img.size(0))

            #lane line segment evaluation
            _,ll_predict=torch.max(ll_seg_out, 1)
            _,ll_gt=torch.max(target[2], 1)
            ll_predict = ll_predict[:, pad_h:height-pad_h, pad_w:width-pad_w]
            ll_gt = ll_gt[:, pad_h:height-pad_h, pad_w:width-pad_w]

            ll_metric.reset()
            ll_metric.addBatch(ll_predict.cpu(), ll_gt.cpu())
            ll_acc = ll_metric.lineAccuracy()
            ll_IoU = ll_metric.IntersectionOverUnion()
            ll_mIoU = ll_metric.meanIntersectionOverUnion()

            ll_acc_seg.update(ll_acc,img.size(0))
            ll_IoU_seg.update(ll_IoU,img.size(0))
            ll_mIoU_seg.update(ll_mIoU,img.size(0))
            
            total_loss, head_losses = criterion((train_out,da_seg_out, ll_seg_out), target, shapes,model)   #Compute loss
            losses.update(total_loss.item(), img.size(0))

            #NMS
            t = time_synchronized()
            target[0][:, 2:] *= torch.Tensor([width, height, width, height]).to(device)  # to pixels
            lb = [target[0][target[0][:, 0] == i, 1:] for i in range(nb)] if save_hybrid else []  # for autolabelling
            output = non_max_suppression(inf_out, conf_thres= config.TEST.NMS_CONF_THRESHOLD, iou_thres=config.TEST.NMS_IOU_THRESHOLD, labels=lb)
            #output = non_max_suppression(inf_out, conf_thres=0.001, iou_thres=0.6)
            #output = non_max_suppression(inf_out, conf_thres=config.TEST.NMS_CONF_THRES, iou_thres=config.TEST.NMS_IOU_THRES)
            t_nms = time_synchronized() - t
            if batch_i > 0:
                T_nms.update(t_nms/img.size(0),img.size(0))

            if config.TEST.PLOTS:
                if batch_i == 0:
                    for i in range(test_batch_size):
                        img_test = cv2.imread(paths[i])
                        da_seg_mask = da_seg_out[i][:, pad_h:height-pad_h, pad_w:width-pad_w].unsqueeze(0)
                        da_seg_mask = torch.nn.functional.interpolate(da_seg_mask, scale_factor=int(1/ratio), mode='bilinear')
                        _, da_seg_mask = torch.max(da_seg_mask, 1)

                        da_gt_mask = target[1][i][:, pad_h:height-pad_h, pad_w:width-pad_w].unsqueeze(0)
                        da_gt_mask = torch.nn.functional.interpolate(da_gt_mask, scale_factor=int(1/ratio), mode='bilinear')
                        _, da_gt_mask = torch.max(da_gt_mask, 1)

                        da_seg_mask = da_seg_mask.int().squeeze().cpu().numpy()
                        da_gt_mask = da_gt_mask.int().squeeze().cpu().numpy()
                        # seg_mask = seg_mask > 0.5
                        # plot_img_and_mask(img_test, seg_mask, i,epoch,save_dir)
                        img_test1 = img_test.copy()
                        _ = show_seg_result(img_test, da_seg_mask, i,epoch,save_dir)
                        _ = show_seg_result(img_test1, da_gt_mask, i, epoch, save_dir, is_gt=True)

                        img_ll = cv2.imread(paths[i])
                        ll_seg_mask = ll_seg_out[i][:, pad_h:height-pad_h, pad_w:width-pad_w].unsqueeze(0)
                        ll_seg_mask = torch.nn.functional.interpolate(ll_seg_mask, scale_factor=int(1/ratio), mode='bilinear')
                        _, ll_seg_mask = torch.max(ll_seg_mask, 1)

                        ll_gt_mask = target[2][i][:, pad_h:height-pad_h, pad_w:width-pad_w].unsqueeze(0)
                        ll_gt_mask = torch.nn.functional.interpolate(ll_gt_mask, scale_factor=int(1/ratio), mode='bilinear')
                        _, ll_gt_mask = torch.max(ll_gt_mask, 1)

                        ll_seg_mask = ll_seg_mask.int().squeeze().cpu().numpy()
                        ll_gt_mask = ll_gt_mask.int().squeeze().cpu().numpy()
                        # seg_mask = seg_mask > 0.5
                        # plot_img_and_mask(img_test, seg_mask, i,epoch,save_dir)
                        img_ll1 = img_ll.copy()
                        _ = show_seg_result(img_ll, ll_seg_mask, i,epoch,save_dir, is_ll=True)
                        _ = show_seg_result(img_ll1, ll_gt_mask, i, epoch, save_dir, is_ll=True, is_gt=True)

                        img_det = cv2.imread(paths[i])
                        img_gt = img_det.copy()
                        det = output[i].clone()
                        if len(det):
                            det[:,:4] = scale_coords(img[i].shape[1:],det[:,:4],img_det.shape).round()
                        for *xyxy,conf,cls in reversed(det):
                            #print(cls)
                            label_det_pred = f'{names[int(cls)]} {conf:.2f}'
                            plot_one_box(xyxy, img_det , label=label_det_pred, color=colors[int(cls)], line_thickness=3)
                        cv2.imwrite(save_dir+"/batch_{}_{}_det_pred.png".format(epoch,i),img_det)

                        labels = target[0][target[0][:, 0] == i, 1:]
                        # print(labels)
                        labels[:,1:5]=xywh2xyxy(labels[:,1:5])
                        if len(labels):
                            labels[:,1:5]=scale_coords(img[i].shape[1:],labels[:,1:5],img_gt.shape).round()
                        for cls,x1,y1,x2,y2 in labels:
                            #print(names)
                            #print(cls)
                            label_det_gt = f'{names[int(cls)]}'
                            xyxy = (x1,y1,x2,y2)
                            plot_one_box(xyxy, img_gt , label=label_det_gt, color=colors[int(cls)], line_thickness=3)
                        cv2.imwrite(save_dir+"/batch_{}_{}_det_gt.png".format(epoch,i),img_gt)

        # Statistics per image
        # output([xyxy,conf,cls])
        # target[0] ([img_id,cls,xyxy])
        for si, pred in enumerate(output):
            labels = target[0][target[0][:, 0] == si, 1:]     #all object in one image 
            nl = len(labels)    # num of object
            tcls = labels[:, 0].tolist() if nl else []  # target class
            path = Path(paths[si])
            seen += 1

            if len(pred) == 0:
                if nl:
                    stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
                continue

            # Predictions
            predn = pred.clone()
            scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1])  # native-space pred

            # Append to text file
            if config.TEST.SAVE_TXT:
                gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]]  # normalization gain whwh
                for *xyxy, conf, cls in predn.tolist():
                    xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                    line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
                    with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f:
                        f.write(('%g ' * len(line)).rstrip() % line + '\n')

            # W&B logging
            if config.TEST.PLOTS and len(wandb_images) < log_imgs:
                box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
                             "class_id": int(cls),
                             "box_caption": "%s %.3f" % (names[cls], conf),
                             "scores": {"class_score": conf},
                             "domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
                boxes = {"predictions": {"box_data": box_data, "class_labels": names}}  # inference-space
                wandb_images.append(wandb.Image(img[si], boxes=boxes, caption=path.name))

            # Append to pycocotools JSON dictionary
            if config.TEST.SAVE_JSON:
                # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
                image_id = int(path.stem) if path.stem.isnumeric() else path.stem
                box = xyxy2xywh(predn[:, :4])  # xywh
                box[:, :2] -= box[:, 2:] / 2  # xy center to top-left corner
                for p, b in zip(pred.tolist(), box.tolist()):
                    jdict.append({'image_id': image_id,
                                  'category_id': coco91class[int(p[5])] if is_coco else int(p[5]),
                                  'bbox': [round(x, 3) for x in b],
                                  'score': round(p[4], 5)})


            # Assign all predictions as incorrect
            correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
            if nl:
                detected = []  # target indices
                tcls_tensor = labels[:, 0]

                # target boxes
                tbox = xywh2xyxy(labels[:, 1:5])
                scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1])  # native-space labels
                if config.TEST.PLOTS:
                    confusion_matrix.process_batch(pred, torch.cat((labels[:, 0:1], tbox), 1))

                # Per target class
                for cls in torch.unique(tcls_tensor):                    
                    ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1)  # prediction indices
                    pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1)  # target indices

                    # Search for detections
                    if pi.shape[0]:
                        # Prediction to target ious
                        # n*m  n:pred  m:label
                        ious, i = box_iou(predn[pi, :4], tbox[ti]).max(1)  # best ious, indices
                        # Append detections
                        detected_set = set()
                        for j in (ious > iouv[0]).nonzero(as_tuple=False):
                            d = ti[i[j]]  # detected target
                            if d.item() not in detected_set:
                                detected_set.add(d.item())
                                detected.append(d)
                                correct[pi[j]] = ious[j] > iouv  # iou_thres is 1xn
                                if len(detected) == nl:  # all targets already located in image
                                    break

            # Append statistics (correct, conf, pcls, tcls)
            stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))

        if config.TEST.PLOTS and batch_i < 3:
            f = save_dir +'/'+ f'test_batch{batch_i}_labels.jpg'  # labels
            #Thread(target=plot_images, args=(img, target[0], paths, f, names), daemon=True).start()
            f = save_dir +'/'+ f'test_batch{batch_i}_pred.jpg'  # predictions
            #Thread(target=plot_images, args=(img, output_to_target(output), paths, f, names), daemon=True).start()

    # Compute statistics
    # stats : [[all_img_correct]...[all_img_tcls]]
    stats = [np.concatenate(x, 0) for x in zip(*stats)]  # to numpy  zip(*) :unzip

    map70 = None
    map75 = None
    if len(stats) and stats[0].any():
        p, r, ap, f1, ap_class = ap_per_class(*stats, plot=False, save_dir=save_dir, names=names)
        ap50, ap70, ap75,ap = ap[:, 0], ap[:,4], ap[:,5],ap.mean(1)  # [P, R, AP@0.5, AP@0.5:0.95]
        mp, mr, map50, map70, map75, map = p.mean(), r.mean(), ap50.mean(), ap70.mean(),ap75.mean(),ap.mean()
        nt = np.bincount(stats[3].astype(np.int64), minlength=nc)  # number of targets per class
    else:
        nt = torch.zeros(1)

    # Print results
    pf = '%20s' + '%12.3g' * 6  # print format
    print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
    #print(map70)
    #print(map75)

    # Print results per class
    if (verbose or (nc <= 20 and not training)) and nc > 1 and len(stats):
        for i, c in enumerate(ap_class):
            print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))

    # Print speeds
    t = tuple(x / seen * 1E3 for x in (t_inf, t_nms, t_inf + t_nms)) + (imgsz, imgsz, batch_size)  # tuple
    if not training:
        print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)

    # Plots
    if config.TEST.PLOTS:
        confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
        if wandb and wandb.run:
            wandb.log({"Images": wandb_images})
            wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('test*.jpg'))]})

    # Save JSON
    if config.TEST.SAVE_JSON and len(jdict):
        w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else ''  # weights
        anno_json = '../coco/annotations/instances_val2017.json'  # annotations json
        pred_json = str(save_dir / f"{w}_predictions.json")  # predictions json
        print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
        with open(pred_json, 'w') as f:
            json.dump(jdict, f)

        try:  # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
            from pycocotools.coco import COCO
            from pycocotools.cocoeval import COCOeval

            anno = COCO(anno_json)  # init annotations api
            pred = anno.loadRes(pred_json)  # init predictions api
            eval = COCOeval(anno, pred, 'bbox')
            if is_coco:
                eval.params.imgIds = [int(Path(x).stem) for x in val_loader.dataset.img_files]  # image IDs to evaluate
            eval.evaluate()
            eval.accumulate()
            eval.summarize()
            map, map50 = eval.stats[:2]  # update results (mAP@0.5:0.95, mAP@0.5)
        except Exception as e:
            print(f'pycocotools unable to run: {e}')

    # Return results
    if not training:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if config.TEST.SAVE_TXT else ''
        print(f"Results saved to {save_dir}{s}")
    model.float()  # for training
    maps = np.zeros(nc) + map
    for i, c in enumerate(ap_class):
        maps[c] = ap[i]

    da_segment_result = (da_acc_seg.avg,da_IoU_seg.avg,da_mIoU_seg.avg)
    ll_segment_result = (ll_acc_seg.avg,ll_IoU_seg.avg,ll_mIoU_seg.avg)

    # print(da_segment_result)
    # print(ll_segment_result)
    detect_result = np.asarray([mp, mr, map50, map])
    # print('mp:{},mr:{},map50:{},map:{}'.format(mp, mr, map50, map))
    #print segmet_result
    t = [T_inf.avg, T_nms.avg]
    return da_segment_result, ll_segment_result, detect_result, losses.avg, maps, t
        


class AverageMeter(object):
    """Computes and stores the average and current value"""
    def __init__(self):
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count if self.count != 0 else 0