File size: 10,761 Bytes
1780fc7
 
 
 
 
67bb36a
 
c502b6d
67bb36a
 
d7f6fbf
67bb36a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc265ce
67bb36a
 
 
 
 
c502b6d
67bb36a
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
---
tags:
- object-detection
---

<div align="left">   

## You Only Look Once for Panoptic ​ Driving Perception
> [**You Only Look at Once for Panoptic driving Perception**](https://arxiv.org/abs/2108.11250)
>
> by Dong Wu, Manwen Liao, Weitian Zhang, [Xinggang Wang](https://xinggangw.info/)     [*School of EIC, HUST*](http://eic.hust.edu.cn/English/Home.htm)
>
> *arXiv technical report ([arXiv 2108.11250](https://arxiv.org/abs/2108.11250))*

---

### The Illustration of YOLOP

![yolop](pictures/yolop.png)

### Contributions

* We put forward an efficient multi-task network that can jointly handle three crucial tasks in autonomous driving: object detection, drivable area segmentation and lane detection to save computational costs, reduce inference time as well as improve the performance of each task. Our work is the first to reach real-time on embedded devices while maintaining state-of-the-art level performance on the `BDD100K `dataset.

* We design the ablative experiments to verify the effectiveness of our multi-tasking scheme. It is proved that the three tasks can be learned jointly without tedious alternating optimization.

  

### Results

#### Traffic Object Detection Result

| Model          | Recall(%) | mAP50(%) | Speed(fps) |
| -------------- | --------- | -------- | ---------- |
| `Multinet`     | 81.3      | 60.2     | 8.6        |
| `DLT-Net`      | 89.4      | 68.4     | 9.3        |
| `Faster R-CNN` | 77.2      | 55.6     | 5.3        |
| `YOLOv5s`      | 86.8      | 77.2     | 82         |
| `YOLOP(ours)`  | 89.2      | 76.5     | 41         |
#### Drivable Area Segmentation Result

| Model         | mIOU(%) | Speed(fps) |
| ------------- | ------- | ---------- |
| `Multinet`    | 71.6    | 8.6        |
| `DLT-Net`     | 71.3    | 9.3        |
| `PSPNet`      | 89.6    | 11.1       |
| `YOLOP(ours)` | 91.5    | 41         |

#### Lane Detection Result:

| Model         | mIOU(%) | IOU(%) |
| ------------- | ------- | ------ |
| `ENet`        | 34.12   | 14.64  |
| `SCNN`        | 35.79   | 15.84  |
| `ENet-SAD`    | 36.56   | 16.02  |
| `YOLOP(ours)` | 70.50   | 26.20  |

#### Ablation Studies 1: End-to-end v.s. Step-by-step:

| Training_method | Recall(%) | AP(%) | mIoU(%) | Accuracy(%) | IoU(%) |
| --------------- | --------- | ----- | ------- | ----------- | ------ |
| `ES-W`          | 87.0      | 75.3  | 90.4    | 66.8        | 26.2   |
| `ED-W`          | 87.3      | 76.0  | 91.6    | 71.2        | 26.1   |
| `ES-D-W`        | 87.0      | 75.1  | 91.7    | 68.6        | 27.0   |
| `ED-S-W`        | 87.5      | 76.1  | 91.6    | 68.0        | 26.8   |
| `End-to-end`    | 89.2      | 76.5  | 91.5    | 70.5        | 26.2   |

#### Ablation Studies 2: Multi-task v.s. Single task:

| Training_method | Recall(%) | AP(%) | mIoU(%) | Accuracy(%) | IoU(%) | Speed(ms/frame) |
| --------------- | --------- | ----- | ------- | ----------- | ------ | --------------- |
| `Det(only)`     | 88.2      | 76.9  | -       | -           | -      | 15.7            |
| `Da-Seg(only)`  | -         | -     | 92.0    | -           | -      | 14.8            |
| `Ll-Seg(only)`  | -         | -     | -       | 79.6        | 27.9   | 14.8            |
| `Multitask`     | 89.2      | 76.5  | 91.5    | 70.5        | 26.2   | 24.4            |

**Notes**: 

- The works we has use for reference including `Multinet`  ([paper](https://arxiv.org/pdf/1612.07695.pdf?utm_campaign=affiliate-ir-Optimise%20media%28%20South%20East%20Asia%29%20Pte.%20ltd._156_-99_national_R_all_ACQ_cpa_en&utm_content=&utm_source=%20388939),[code](https://github.com/MarvinTeichmann/MultiNet)),`DLT-Net`   ([paper](https://ieeexplore.ieee.org/abstract/document/8937825)),`Faster R-CNN`  ([paper](https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf),[code](https://github.com/ShaoqingRen/faster_rcnn)),`YOLOv5s`([code](https://github.com/ultralytics/yolov5))  ,`PSPNet`([paper](https://openaccess.thecvf.com/content_cvpr_2017/papers/Zhao_Pyramid_Scene_Parsing_CVPR_2017_paper.pdf),[code](https://github.com/hszhao/PSPNet)) ,`ENet`([paper](https://arxiv.org/pdf/1606.02147.pdf),[code](https://github.com/osmr/imgclsmob))    `SCNN`([paper](https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/download/16802/16322),[code](https://github.com/XingangPan/SCNN))    `SAD-ENet`([paper](https://openaccess.thecvf.com/content_ICCV_2019/papers/Hou_Learning_Lightweight_Lane_Detection_CNNs_by_Self_Attention_Distillation_ICCV_2019_paper.pdf),[code](https://github.com/cardwing/Codes-for-Lane-Detection)). Thanks for their wonderful works.
- In table 4, E, D, S and W refer to Encoder, Detect head, two Segment heads and whole network. So the Algorithm (First, we only train Encoder and Detect head. Then we freeze the Encoder and Detect head as well as train two Segmentation heads. Finally, the entire network is trained jointly for all three tasks.) can be marked as ED-S-W, and the same for others.

---

### Visualization

#### Traffic Object Detection Result

![detect result](pictures/detect.png)

#### Drivable Area Segmentation Result

![](pictures/da.png)

#### Lane Detection Result

![](pictures/ll.png)

**Notes**: 

- The visualization of lane detection result has been post processed by quadratic fitting.

---

### Project Structure

```python
├─inference
│ ├─images   # inference images
│ ├─output   # inference result
├─lib
│ ├─config/default   # configuration of training and validation
│ ├─core    
│ │ ├─activations.py   # activation function
│ │ ├─evaluate.py   # calculation of metric
│ │ ├─function.py   # training and validation of model
│ │ ├─general.py   #calculation of metric、nms、conversion of data-format、visualization
│ │ ├─loss.py   # loss function
│ │ ├─postprocess.py   # postprocess(refine da-seg and ll-seg, unrelated to paper)
│ ├─dataset
│ │ ├─AutoDriveDataset.py   # Superclass dataset,general function
│ │ ├─bdd.py   # Subclass dataset,specific function
│ │ ├─hust.py   # Subclass dataset(Campus scene, unrelated to paper)
│ │ ├─convect.py 
│ │ ├─DemoDataset.py   # demo dataset(image, video and stream)
│ ├─models
│ │ ├─YOLOP.py    # Setup and Configuration of model
│ │ ├─light.py    # Model lightweight(unrelated to paper, zwt)
│ │ ├─commom.py   # calculation module
│ ├─utils
│ │ ├─augmentations.py    # data augumentation
│ │ ├─autoanchor.py   # auto anchor(k-means)
│ │ ├─split_dataset.py  # (Campus scene, unrelated to paper)
│ │ ├─utils.py  # logging、device_select、time_measure、optimizer_select、model_save&initialize 、Distributed training
│ ├─run
│ │ ├─dataset/training time  # Visualization, logging and model_save
├─tools
│ │ ├─demo.py    # demo(folder、camera)
│ │ ├─test.py    
│ │ ├─train.py    
├─toolkits
│ │ ├─depoly    # Deployment of model
├─weights    # Pretraining model
```

---

### Requirement

This codebase has been developed with python version 3.7, PyTorch 1.7+ and torchvision 0.8+:

```
conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=10.2 -c pytorch
```

See `requirements.txt` for additional dependencies and version requirements.

```setup
pip install -r requirements.txt
```

### Data preparation

#### Download

- Download the images from [images](https://bdd-data.berkeley.edu/).

- Download the annotations of detection from [det_annotations](https://drive.google.com/file/d/1Ge-R8NTxG1eqd4zbryFo-1Uonuh0Nxyl/view?usp=sharing). 
- Download the annotations of drivable area segmentation from [da_seg_annotations](https://drive.google.com/file/d/1xy_DhUZRHR8yrZG3OwTQAHhYTnXn7URv/view?usp=sharing). 
- Download the annotations of lane line segmentation from [ll_seg_annotations](https://drive.google.com/file/d/1lDNTPIQj_YLNZVkksKM25CvCHuquJ8AP/view?usp=sharing). 

We recommend the dataset directory structure to be the following:

```
# The id represent the correspondence relation
├─dataset root
│ ├─images
│ │ ├─train
│ │ ├─val
│ ├─det_annotations
│ │ ├─train
│ │ ├─val
│ ├─da_seg_annotations
│ │ ├─train
│ │ ├─val
│ ├─ll_seg_annotations
│ │ ├─train
│ │ ├─val
```

Update the your dataset path in the `./lib/config/default.py`.

### Training

You can set the training configuration in the `./lib/config/default.py`. (Including:  the loading of preliminary model,  loss,  data augmentation, optimizer, warm-up and cosine annealing, auto-anchor, training epochs, batch_size).

If you want try alternating optimization or train model for single task, please modify the corresponding configuration in `./lib/config/default.py` to `True`. (As following, all configurations is `False`, which means training multiple tasks end to end).

```python
# Alternating optimization
_C.TRAIN.SEG_ONLY = False           # Only train two segmentation branchs
_C.TRAIN.DET_ONLY = False           # Only train detection branch
_C.TRAIN.ENC_SEG_ONLY = False       # Only train encoder and two segmentation branchs
_C.TRAIN.ENC_DET_ONLY = False       # Only train encoder and detection branch

# Single task 
_C.TRAIN.DRIVABLE_ONLY = False      # Only train da_segmentation task
_C.TRAIN.LANE_ONLY = False          # Only train ll_segmentation task
_C.TRAIN.DET_ONLY = False          # Only train detection task
```

Start training:

```shell
python tools/train.py
```



### Evaluation

You can set the evaluation configuration in the `./lib/config/default.py`. (Including: batch_size and threshold value for nms).

Start evaluating:

```shell
python tools/test.py --weights weights/End-to-end.pth
```



### Demo Test

We provide two testing method.

#### Folder

You can store the image or video in `--source`, and then save the reasoning result to `--save-dir`

```shell
python tools/demo --source inference/images
```



#### Camera

If there are any camera connected to your computer, you can set the `source` as the camera number(The default is 0).

```shell
python tools/demo --source 0
```

### Deployment

Our model can reason in real-time on `Jetson Tx2`, with `Zed Camera` to capture image. We use `TensorRT` tool for speeding up. We provide code for deployment and reasoning of model in  `./toolkits/deploy`. 



## Citation

If you find our paper and code useful for your research, please consider giving a star and citation:

```BibTeX
@misc{2108.11250,
Author = {Dong Wu and Manwen Liao and Weitian Zhang and Xinggang Wang},
Title = {YOLOP: You Only Look Once for Panoptic Driving Perception},
Year = {2021},
Eprint = {arXiv:2108.11250},
}
```