zephyr-7b-dpo-full / README.md
RikkiXu's picture
End of training
f3cd04e verified
|
raw
history blame
2.88 kB
metadata
license: apache-2.0
base_model: alignment-handbook/zephyr-7b-sft-full
tags:
  - alignment-handbook
  - trl
  - dpo
  - generated_from_trainer
  - trl
  - dpo
  - generated_from_trainer
datasets:
  - HuggingFaceH4/ultrafeedback_binarized
model-index:
  - name: zephyr-7b-dpo-full
    results: []

zephyr-7b-dpo-full

This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-full on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5352
  • Rewards/chosen: 0.5766
  • Rewards/rejected: -0.3207
  • Rewards/accuracies: 0.7617
  • Rewards/margins: 0.8972
  • Logps/rejected: -269.0807
  • Logps/chosen: -251.0624
  • Logits/rejected: -2.4374
  • Logits/chosen: -2.4784

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.565 0.21 100 0.5718 0.5950 -0.0056 0.7383 0.6006 -262.7792 -250.6930 -2.5105 -2.5504
0.5467 0.42 200 0.5433 0.6478 -0.1115 0.7461 0.7594 -264.8979 -249.6371 -2.4783 -2.5179
0.517 0.63 300 0.5370 0.5686 -0.2689 0.7695 0.8374 -268.0445 -251.2220 -2.5203 -2.5623
0.518 0.84 400 0.5348 0.6286 -0.2212 0.7539 0.8498 -267.0915 -250.0218 -2.4324 -2.4731

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.2