metadata
license: apache-2.0
base_model: alignment-handbook/zephyr-7b-sft-full
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
- trl
- dpo
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: zephyr-7b-dpo-full
results: []
zephyr-7b-dpo-full
This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-full on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:
- Loss: 0.5352
- Rewards/chosen: 0.5766
- Rewards/rejected: -0.3207
- Rewards/accuracies: 0.7617
- Rewards/margins: 0.8972
- Logps/rejected: -269.0807
- Logps/chosen: -251.0624
- Logits/rejected: -2.4374
- Logits/chosen: -2.4784
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.565 | 0.21 | 100 | 0.5718 | 0.5950 | -0.0056 | 0.7383 | 0.6006 | -262.7792 | -250.6930 | -2.5105 | -2.5504 |
0.5467 | 0.42 | 200 | 0.5433 | 0.6478 | -0.1115 | 0.7461 | 0.7594 | -264.8979 | -249.6371 | -2.4783 | -2.5179 |
0.517 | 0.63 | 300 | 0.5370 | 0.5686 | -0.2689 | 0.7695 | 0.8374 | -268.0445 | -251.2220 | -2.5203 | -2.5623 |
0.518 | 0.84 | 400 | 0.5348 | 0.6286 | -0.2212 | 0.7539 | 0.8498 | -267.0915 | -250.0218 | -2.4324 | -2.4731 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.2