File size: 9,016 Bytes
4575669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
Quantization made by Richard Erkhov.

[Github](https://github.com/RichardErkhov)

[Discord](https://discord.gg/pvy7H8DZMG)

[Request more models](https://github.com/RichardErkhov/quant_request)


OceanGPT-2B-v0.1 - GGUF
- Model creator: https://huggingface.co/zjunlp/
- Original model: https://huggingface.co/zjunlp/OceanGPT-2B-v0.1/


| Name | Quant method | Size |
| ---- | ---- | ---- |
| [OceanGPT-2B-v0.1.Q2_K.gguf](https://huggingface.co/RichardErkhov/zjunlp_-_OceanGPT-2B-v0.1-gguf/blob/main/OceanGPT-2B-v0.1.Q2_K.gguf) | Q2_K | 1.12GB |
| [OceanGPT-2B-v0.1.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/zjunlp_-_OceanGPT-2B-v0.1-gguf/blob/main/OceanGPT-2B-v0.1.IQ3_XS.gguf) | IQ3_XS | 1.21GB |
| [OceanGPT-2B-v0.1.IQ3_S.gguf](https://huggingface.co/RichardErkhov/zjunlp_-_OceanGPT-2B-v0.1-gguf/blob/main/OceanGPT-2B-v0.1.IQ3_S.gguf) | IQ3_S | 1.26GB |
| [OceanGPT-2B-v0.1.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/zjunlp_-_OceanGPT-2B-v0.1-gguf/blob/main/OceanGPT-2B-v0.1.Q3_K_S.gguf) | Q3_K_S | 1.26GB |
| [OceanGPT-2B-v0.1.IQ3_M.gguf](https://huggingface.co/RichardErkhov/zjunlp_-_OceanGPT-2B-v0.1-gguf/blob/main/OceanGPT-2B-v0.1.IQ3_M.gguf) | IQ3_M | 1.32GB |
| [OceanGPT-2B-v0.1.Q3_K.gguf](https://huggingface.co/RichardErkhov/zjunlp_-_OceanGPT-2B-v0.1-gguf/blob/main/OceanGPT-2B-v0.1.Q3_K.gguf) | Q3_K | 1.38GB |
| [OceanGPT-2B-v0.1.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/zjunlp_-_OceanGPT-2B-v0.1-gguf/blob/main/OceanGPT-2B-v0.1.Q3_K_M.gguf) | Q3_K_M | 1.38GB |
| [OceanGPT-2B-v0.1.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/zjunlp_-_OceanGPT-2B-v0.1-gguf/blob/main/OceanGPT-2B-v0.1.Q3_K_L.gguf) | Q3_K_L | 1.46GB |
| [OceanGPT-2B-v0.1.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/zjunlp_-_OceanGPT-2B-v0.1-gguf/blob/main/OceanGPT-2B-v0.1.IQ4_XS.gguf) | IQ4_XS | 1.45GB |
| [OceanGPT-2B-v0.1.Q4_0.gguf](https://huggingface.co/RichardErkhov/zjunlp_-_OceanGPT-2B-v0.1-gguf/blob/main/OceanGPT-2B-v0.1.Q4_0.gguf) | Q4_0 | 1.5GB |
| [OceanGPT-2B-v0.1.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/zjunlp_-_OceanGPT-2B-v0.1-gguf/blob/main/OceanGPT-2B-v0.1.IQ4_NL.gguf) | IQ4_NL | 1.51GB |
| [OceanGPT-2B-v0.1.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/zjunlp_-_OceanGPT-2B-v0.1-gguf/blob/main/OceanGPT-2B-v0.1.Q4_K_S.gguf) | Q4_K_S | 1.57GB |
| [OceanGPT-2B-v0.1.Q4_K.gguf](https://huggingface.co/RichardErkhov/zjunlp_-_OceanGPT-2B-v0.1-gguf/blob/main/OceanGPT-2B-v0.1.Q4_K.gguf) | Q4_K | 1.68GB |
| [OceanGPT-2B-v0.1.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/zjunlp_-_OceanGPT-2B-v0.1-gguf/blob/main/OceanGPT-2B-v0.1.Q4_K_M.gguf) | Q4_K_M | 1.68GB |
| [OceanGPT-2B-v0.1.Q4_1.gguf](https://huggingface.co/RichardErkhov/zjunlp_-_OceanGPT-2B-v0.1-gguf/blob/main/OceanGPT-2B-v0.1.Q4_1.gguf) | Q4_1 | 1.64GB |
| [OceanGPT-2B-v0.1.Q5_0.gguf](https://huggingface.co/RichardErkhov/zjunlp_-_OceanGPT-2B-v0.1-gguf/blob/main/OceanGPT-2B-v0.1.Q5_0.gguf) | Q5_0 | 1.78GB |
| [OceanGPT-2B-v0.1.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/zjunlp_-_OceanGPT-2B-v0.1-gguf/blob/main/OceanGPT-2B-v0.1.Q5_K_S.gguf) | Q5_K_S | 1.81GB |
| [OceanGPT-2B-v0.1.Q5_K.gguf](https://huggingface.co/RichardErkhov/zjunlp_-_OceanGPT-2B-v0.1-gguf/blob/main/OceanGPT-2B-v0.1.Q5_K.gguf) | Q5_K | 1.9GB |
| [OceanGPT-2B-v0.1.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/zjunlp_-_OceanGPT-2B-v0.1-gguf/blob/main/OceanGPT-2B-v0.1.Q5_K_M.gguf) | Q5_K_M | 1.9GB |
| [OceanGPT-2B-v0.1.Q5_1.gguf](https://huggingface.co/RichardErkhov/zjunlp_-_OceanGPT-2B-v0.1-gguf/blob/main/OceanGPT-2B-v0.1.Q5_1.gguf) | Q5_1 | 1.93GB |
| [OceanGPT-2B-v0.1.Q6_K.gguf](https://huggingface.co/RichardErkhov/zjunlp_-_OceanGPT-2B-v0.1-gguf/blob/main/OceanGPT-2B-v0.1.Q6_K.gguf) | Q6_K | 2.2GB |
| [OceanGPT-2B-v0.1.Q8_0.gguf](https://huggingface.co/RichardErkhov/zjunlp_-_OceanGPT-2B-v0.1-gguf/blob/main/OceanGPT-2B-v0.1.Q8_0.gguf) | Q8_0 | 2.7GB |




Original model description:
---
license: mit
pipeline_tag: text-generation
tags:
- ocean
- text-generation-inference
- oceangpt
language:
- en
- zh
datasets:
- zjunlp/OceanInstruct
---


<div align="center">
<img src="logo.jpg" width="300px">

**OceanGPT(沧渊): A Large Language Model for Ocean Science Tasks**

<p align="center">
  <a href="https://github.com/zjunlp/OceanGPT">Project</a><a href="https://arxiv.org/abs/2310.02031">Paper</a><a href="https://huggingface.co/collections/zjunlp/oceangpt-664cc106358fdd9f09aa5157">Models</a><a href="http://oceangpt.zjukg.cn/">Web</a><a href="#quickstart">Quickstart</a><a href="#citation">Citation</a>
</p>


</div>

OceanGPT-2B-v0.1 is based on MiniCPM-2B and has been trained on a bilingual dataset in the ocean domain, covering both Chinese and English.

-**Disclaimer: This project is purely an academic exploration rather than a product. Please be aware that due to the inherent limitations of large language models, there may be issues such as hallucinations.**


## ⏩Quickstart
### Download the model

Download the model: [OceanGPT-2B-v0.1](https://huggingface.co/zjunlp/OceanGPT-2B-v0.1)  

```shell
git lfs install
git clone https://huggingface.co/zjunlp/OceanGPT-2B-v0.1
```
or
```
huggingface-cli download --resume-download zjunlp/OceanGPT-2B-v0.1 --local-dir OceanGPT-2B-v0.1 --local-dir-use-symlinks False
```
### Inference

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
device = "cuda" # the device to load the model onto
path = 'YOUR-MODEL-PATH'
model = AutoModelForCausalLM.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(path)

prompt = "Which is the largest ocean in the world?"
messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)

generated_ids = model.generate(
    model_inputs.input_ids,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```

## 📌Models

| Model Name        | HuggingFace                                                          | WiseModel                                                                 | ModelScope                                                                |
|-------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| OceanGPT-14B-v0.1 (based on Qwen) | <a href="https://huggingface.co/zjunlp/OceanGPT-14B-v0.1" target="_blank">14B</a> | <a href="https://wisemodel.cn/models/zjunlp/OceanGPT-14B-v0.1" target="_blank">14B</a> | <a href="https://modelscope.cn/models/ZJUNLP/OceanGPT-14B-v0.1" target="_blank">14B</a> |
| OceanGPT-7B-v0.2 (based on Qwen) | <a href="https://huggingface.co/zjunlp/OceanGPT-7b-v0.2" target="_blank">7B</a>   | <a href="https://wisemodel.cn/models/zjunlp/OceanGPT-7b-v0.2" target="_blank">7B</a>   | <a href="https://modelscope.cn/models/ZJUNLP/OceanGPT-7b-v0.2" target="_blank">7B</a>   |
| OceanGPT-2B-v0.1 (based on MiniCPM) | <a href="https://huggingface.co/zjunlp/OceanGPT-2B-v0.1" target="_blank">2B</a>   | <a href="https://wisemodel.cn/models/zjunlp/OceanGPT-2b-v0.1" target="_blank">2B</a>   | <a href="https://modelscope.cn/models/ZJUNLP/OceanGPT-2B-v0.1" target="_blank">2B</a>   |
 

## 🌻Acknowledgement

OceanGPT(沧渊) is trained based on the open-sourced large language models including [Qwen](https://huggingface.co/Qwen), [MiniCPM](https://huggingface.co/collections/openbmb/minicpm-2b-65d48bf958302b9fd25b698f), [LLaMA](https://huggingface.co/meta-llama). Thanks for their great contributions!

## Limitations

- The model may have hallucination issues.

- We did not optimize the identity and the model may generate identity information similar to that of Qwen/MiniCPM/LLaMA/GPT series models.

- The model's output is influenced by prompt tokens, which may result in inconsistent results across multiple attempts.

- The model requires the inclusion of specific simulator code instructions for training in order to possess simulated embodied intelligence capabilities (the simulator is subject to copyright restrictions and cannot be made available for now), and its current capabilities are quite limited.


### 🚩Citation

Please cite the following paper if you use OceanGPT in your work.

```bibtex
@article{bi2023oceangpt,
  title={OceanGPT: A Large Language Model for Ocean Science Tasks},
  author={Bi, Zhen and Zhang, Ningyu and Xue, Yida and Ou, Yixin and Ji, Daxiong and Zheng, Guozhou and Chen, Huajun},
  journal={arXiv preprint arXiv:2310.02031},
  year={2023}
}

```