|
Quantization made by Richard Erkhov. |
|
|
|
[Github](https://github.com/RichardErkhov) |
|
|
|
[Discord](https://discord.gg/pvy7H8DZMG) |
|
|
|
[Request more models](https://github.com/RichardErkhov/quant_request) |
|
|
|
|
|
Qwen2-0.5B-KTO - GGUF |
|
- Model creator: https://huggingface.co/trl-lib/ |
|
- Original model: https://huggingface.co/trl-lib/Qwen2-0.5B-KTO/ |
|
|
|
|
|
| Name | Quant method | Size | |
|
| ---- | ---- | ---- | |
|
| [Qwen2-0.5B-KTO.Q2_K.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-KTO-gguf/blob/main/Qwen2-0.5B-KTO.Q2_K.gguf) | Q2_K | 0.32GB | |
|
| [Qwen2-0.5B-KTO.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-KTO-gguf/blob/main/Qwen2-0.5B-KTO.Q3_K_S.gguf) | Q3_K_S | 0.32GB | |
|
| [Qwen2-0.5B-KTO.Q3_K.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-KTO-gguf/blob/main/Qwen2-0.5B-KTO.Q3_K.gguf) | Q3_K | 0.33GB | |
|
| [Qwen2-0.5B-KTO.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-KTO-gguf/blob/main/Qwen2-0.5B-KTO.Q3_K_M.gguf) | Q3_K_M | 0.33GB | |
|
| [Qwen2-0.5B-KTO.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-KTO-gguf/blob/main/Qwen2-0.5B-KTO.Q3_K_L.gguf) | Q3_K_L | 0.34GB | |
|
| [Qwen2-0.5B-KTO.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-KTO-gguf/blob/main/Qwen2-0.5B-KTO.IQ4_XS.gguf) | IQ4_XS | 0.33GB | |
|
| [Qwen2-0.5B-KTO.Q4_0.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-KTO-gguf/blob/main/Qwen2-0.5B-KTO.Q4_0.gguf) | Q4_0 | 0.33GB | |
|
| [Qwen2-0.5B-KTO.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-KTO-gguf/blob/main/Qwen2-0.5B-KTO.IQ4_NL.gguf) | IQ4_NL | 0.33GB | |
|
| [Qwen2-0.5B-KTO.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-KTO-gguf/blob/main/Qwen2-0.5B-KTO.Q4_K_S.gguf) | Q4_K_S | 0.36GB | |
|
| [Qwen2-0.5B-KTO.Q4_K.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-KTO-gguf/blob/main/Qwen2-0.5B-KTO.Q4_K.gguf) | Q4_K | 0.37GB | |
|
| [Qwen2-0.5B-KTO.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-KTO-gguf/blob/main/Qwen2-0.5B-KTO.Q4_K_M.gguf) | Q4_K_M | 0.37GB | |
|
| [Qwen2-0.5B-KTO.Q4_1.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-KTO-gguf/blob/main/Qwen2-0.5B-KTO.Q4_1.gguf) | Q4_1 | 0.35GB | |
|
| [Qwen2-0.5B-KTO.Q5_0.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-KTO-gguf/blob/main/Qwen2-0.5B-KTO.Q5_0.gguf) | Q5_0 | 0.37GB | |
|
| [Qwen2-0.5B-KTO.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-KTO-gguf/blob/main/Qwen2-0.5B-KTO.Q5_K_S.gguf) | Q5_K_S | 0.38GB | |
|
| [Qwen2-0.5B-KTO.Q5_K.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-KTO-gguf/blob/main/Qwen2-0.5B-KTO.Q5_K.gguf) | Q5_K | 0.39GB | |
|
| [Qwen2-0.5B-KTO.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-KTO-gguf/blob/main/Qwen2-0.5B-KTO.Q5_K_M.gguf) | Q5_K_M | 0.39GB | |
|
| [Qwen2-0.5B-KTO.Q5_1.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-KTO-gguf/blob/main/Qwen2-0.5B-KTO.Q5_1.gguf) | Q5_1 | 0.39GB | |
|
| [Qwen2-0.5B-KTO.Q6_K.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-KTO-gguf/blob/main/Qwen2-0.5B-KTO.Q6_K.gguf) | Q6_K | 0.47GB | |
|
| [Qwen2-0.5B-KTO.Q8_0.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-KTO-gguf/blob/main/Qwen2-0.5B-KTO.Q8_0.gguf) | Q8_0 | 0.49GB | |
|
|
|
|
|
|
|
|
|
Original model description: |
|
--- |
|
base_model: Qwen/Qwen2-0.5B-Instruct |
|
datasets: trl-lib/kto-mix-14k |
|
library_name: transformers |
|
model_name: Qwen2-0.5B-KTO |
|
tags: |
|
- generated_from_trainer |
|
- trl |
|
- kto |
|
licence: license |
|
--- |
|
|
|
# Model Card for Qwen2-0.5B-KTO |
|
|
|
This model is a fine-tuned version of [Qwen/Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) on the [trl-lib/kto-mix-14k](https://huggingface.co/datasets/trl-lib/kto-mix-14k) dataset. |
|
It has been trained using [TRL](https://github.com/huggingface/trl). |
|
|
|
## Quick start |
|
|
|
```python |
|
from transformers import pipeline |
|
|
|
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" |
|
generator = pipeline("text-generation", model="qgallouedec/Qwen2-0.5B-KTO", device="cuda") |
|
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] |
|
print(output["generated_text"]) |
|
``` |
|
|
|
## Training procedure |
|
|
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/huggingface/trl/runs/m4w4f1v9) |
|
|
|
This model was trained with KTO, a method introduced in [KTO: Model Alignment as Prospect Theoretic Optimization](https://huggingface.co/papers/2402.01306). |
|
|
|
### Framework versions |
|
|
|
- TRL: 0.12.0.dev0 |
|
- Transformers: 4.46.0.dev0 |
|
- Pytorch: 2.4.1 |
|
- Datasets: 3.0.1 |
|
- Tokenizers: 0.20.0 |
|
|
|
## Citations |
|
|
|
Cite KTO as: |
|
|
|
```bibtex |
|
@article{ethayarajh2024kto, |
|
title = {{KTO: Model Alignment as Prospect Theoretic Optimization}}, |
|
author = {Kawin Ethayarajh and Winnie Xu and Niklas Muennighoff and Dan Jurafsky and Douwe Kiela}, |
|
year = 2024, |
|
eprint = {arXiv:2402.01306}, |
|
} |
|
``` |
|
|
|
Cite TRL as: |
|
|
|
```bibtex |
|
@misc{vonwerra2022trl, |
|
title = {{TRL: Transformer Reinforcement Learning}}, |
|
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, |
|
year = 2020, |
|
journal = {GitHub repository}, |
|
publisher = {GitHub}, |
|
howpublished = {\url{https://github.com/huggingface/trl}} |
|
} |
|
``` |
|
|
|
|