RichardErkhov
commited on
Commit
•
798127c
1
Parent(s):
e495e94
uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
Qwen2-0.5B-KTO - GGUF
|
11 |
+
- Model creator: https://huggingface.co/trl-lib/
|
12 |
+
- Original model: https://huggingface.co/trl-lib/Qwen2-0.5B-KTO/
|
13 |
+
|
14 |
+
|
15 |
+
| Name | Quant method | Size |
|
16 |
+
| ---- | ---- | ---- |
|
17 |
+
| [Qwen2-0.5B-KTO.Q2_K.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-KTO-gguf/blob/main/Qwen2-0.5B-KTO.Q2_K.gguf) | Q2_K | 0.32GB |
|
18 |
+
| [Qwen2-0.5B-KTO.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-KTO-gguf/blob/main/Qwen2-0.5B-KTO.Q3_K_S.gguf) | Q3_K_S | 0.32GB |
|
19 |
+
| [Qwen2-0.5B-KTO.Q3_K.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-KTO-gguf/blob/main/Qwen2-0.5B-KTO.Q3_K.gguf) | Q3_K | 0.33GB |
|
20 |
+
| [Qwen2-0.5B-KTO.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-KTO-gguf/blob/main/Qwen2-0.5B-KTO.Q3_K_M.gguf) | Q3_K_M | 0.33GB |
|
21 |
+
| [Qwen2-0.5B-KTO.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-KTO-gguf/blob/main/Qwen2-0.5B-KTO.Q3_K_L.gguf) | Q3_K_L | 0.34GB |
|
22 |
+
| [Qwen2-0.5B-KTO.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-KTO-gguf/blob/main/Qwen2-0.5B-KTO.IQ4_XS.gguf) | IQ4_XS | 0.33GB |
|
23 |
+
| [Qwen2-0.5B-KTO.Q4_0.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-KTO-gguf/blob/main/Qwen2-0.5B-KTO.Q4_0.gguf) | Q4_0 | 0.33GB |
|
24 |
+
| [Qwen2-0.5B-KTO.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-KTO-gguf/blob/main/Qwen2-0.5B-KTO.IQ4_NL.gguf) | IQ4_NL | 0.33GB |
|
25 |
+
| [Qwen2-0.5B-KTO.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-KTO-gguf/blob/main/Qwen2-0.5B-KTO.Q4_K_S.gguf) | Q4_K_S | 0.36GB |
|
26 |
+
| [Qwen2-0.5B-KTO.Q4_K.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-KTO-gguf/blob/main/Qwen2-0.5B-KTO.Q4_K.gguf) | Q4_K | 0.37GB |
|
27 |
+
| [Qwen2-0.5B-KTO.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-KTO-gguf/blob/main/Qwen2-0.5B-KTO.Q4_K_M.gguf) | Q4_K_M | 0.37GB |
|
28 |
+
| [Qwen2-0.5B-KTO.Q4_1.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-KTO-gguf/blob/main/Qwen2-0.5B-KTO.Q4_1.gguf) | Q4_1 | 0.35GB |
|
29 |
+
| [Qwen2-0.5B-KTO.Q5_0.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-KTO-gguf/blob/main/Qwen2-0.5B-KTO.Q5_0.gguf) | Q5_0 | 0.37GB |
|
30 |
+
| [Qwen2-0.5B-KTO.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-KTO-gguf/blob/main/Qwen2-0.5B-KTO.Q5_K_S.gguf) | Q5_K_S | 0.38GB |
|
31 |
+
| [Qwen2-0.5B-KTO.Q5_K.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-KTO-gguf/blob/main/Qwen2-0.5B-KTO.Q5_K.gguf) | Q5_K | 0.39GB |
|
32 |
+
| [Qwen2-0.5B-KTO.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-KTO-gguf/blob/main/Qwen2-0.5B-KTO.Q5_K_M.gguf) | Q5_K_M | 0.39GB |
|
33 |
+
| [Qwen2-0.5B-KTO.Q5_1.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-KTO-gguf/blob/main/Qwen2-0.5B-KTO.Q5_1.gguf) | Q5_1 | 0.39GB |
|
34 |
+
| [Qwen2-0.5B-KTO.Q6_K.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-KTO-gguf/blob/main/Qwen2-0.5B-KTO.Q6_K.gguf) | Q6_K | 0.47GB |
|
35 |
+
| [Qwen2-0.5B-KTO.Q8_0.gguf](https://huggingface.co/RichardErkhov/trl-lib_-_Qwen2-0.5B-KTO-gguf/blob/main/Qwen2-0.5B-KTO.Q8_0.gguf) | Q8_0 | 0.49GB |
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
Original model description:
|
41 |
+
---
|
42 |
+
base_model: Qwen/Qwen2-0.5B-Instruct
|
43 |
+
datasets: trl-lib/kto-mix-14k
|
44 |
+
library_name: transformers
|
45 |
+
model_name: Qwen2-0.5B-KTO
|
46 |
+
tags:
|
47 |
+
- generated_from_trainer
|
48 |
+
- trl
|
49 |
+
- kto
|
50 |
+
licence: license
|
51 |
+
---
|
52 |
+
|
53 |
+
# Model Card for Qwen2-0.5B-KTO
|
54 |
+
|
55 |
+
This model is a fine-tuned version of [Qwen/Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) on the [trl-lib/kto-mix-14k](https://huggingface.co/datasets/trl-lib/kto-mix-14k) dataset.
|
56 |
+
It has been trained using [TRL](https://github.com/huggingface/trl).
|
57 |
+
|
58 |
+
## Quick start
|
59 |
+
|
60 |
+
```python
|
61 |
+
from transformers import pipeline
|
62 |
+
|
63 |
+
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
64 |
+
generator = pipeline("text-generation", model="qgallouedec/Qwen2-0.5B-KTO", device="cuda")
|
65 |
+
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
66 |
+
print(output["generated_text"])
|
67 |
+
```
|
68 |
+
|
69 |
+
## Training procedure
|
70 |
+
|
71 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/huggingface/trl/runs/m4w4f1v9)
|
72 |
+
|
73 |
+
This model was trained with KTO, a method introduced in [KTO: Model Alignment as Prospect Theoretic Optimization](https://huggingface.co/papers/2402.01306).
|
74 |
+
|
75 |
+
### Framework versions
|
76 |
+
|
77 |
+
- TRL: 0.12.0.dev0
|
78 |
+
- Transformers: 4.46.0.dev0
|
79 |
+
- Pytorch: 2.4.1
|
80 |
+
- Datasets: 3.0.1
|
81 |
+
- Tokenizers: 0.20.0
|
82 |
+
|
83 |
+
## Citations
|
84 |
+
|
85 |
+
Cite KTO as:
|
86 |
+
|
87 |
+
```bibtex
|
88 |
+
@article{ethayarajh2024kto,
|
89 |
+
title = {{KTO: Model Alignment as Prospect Theoretic Optimization}},
|
90 |
+
author = {Kawin Ethayarajh and Winnie Xu and Niklas Muennighoff and Dan Jurafsky and Douwe Kiela},
|
91 |
+
year = 2024,
|
92 |
+
eprint = {arXiv:2402.01306},
|
93 |
+
}
|
94 |
+
```
|
95 |
+
|
96 |
+
Cite TRL as:
|
97 |
+
|
98 |
+
```bibtex
|
99 |
+
@misc{vonwerra2022trl,
|
100 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
101 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
|
102 |
+
year = 2020,
|
103 |
+
journal = {GitHub repository},
|
104 |
+
publisher = {GitHub},
|
105 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
106 |
+
}
|
107 |
+
```
|
108 |
+
|