RichardErkhov
commited on
Commit
•
6ca63be
1
Parent(s):
7645a4e
uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
bilingual-gpt-neox-4b-instruction-ppo - bnb 4bits
|
11 |
+
- Model creator: https://huggingface.co/rinna/
|
12 |
+
- Original model: https://huggingface.co/rinna/bilingual-gpt-neox-4b-instruction-ppo/
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
Original model description:
|
18 |
+
---
|
19 |
+
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png
|
20 |
+
license: mit
|
21 |
+
datasets:
|
22 |
+
- Anthropic/hh-rlhf
|
23 |
+
language:
|
24 |
+
- ja
|
25 |
+
- en
|
26 |
+
inference: false
|
27 |
+
base_model: rinna/bilingual-gpt-neox-4b
|
28 |
+
---
|
29 |
+
|
30 |
+
# bilingual-gpt-neox-4b-instruction-ppo
|
31 |
+
|
32 |
+
![rinna-icon](./rinna.png)
|
33 |
+
|
34 |
+
---
|
35 |
+
|
36 |
+
# Overview
|
37 |
+
This repository provides an English-Japanese bilingual GPT-NeoX model of 3.8 billion parameters.
|
38 |
+
|
39 |
+
The model is based on [`rinna/bilingual-gpt-neox-4b-instruction-sft`](https://huggingface.co/rinna/bilingual-gpt-neox-4b-instruction-sft) and has been aligned to serve as an instruction-following conversational agent.
|
40 |
+
|
41 |
+
* **Model architecture**
|
42 |
+
|
43 |
+
A 36-layer, 2816-hidden-size transformer-based language model.
|
44 |
+
|
45 |
+
* **RLHF**
|
46 |
+
|
47 |
+
Following the [OpenAI InstructGPT paper](https://arxiv.org/abs/2203.02155), **Reinforcement Learning from Human Feedback** (RLHF) has been applied to aligning the model's behaviour with input instructions. Particularly, the model has been trained in two stages, i.e. **Supervised Fine-Tuning** (SFT) and [PPO](https://arxiv.org/abs/1707.06347)-based **Reinforcement Learning** (RL).
|
48 |
+
* The first SFT stage produces [`rinna/bilingual-gpt-neox-4b-instruction-sft`](https://huggingface.co/rinna/bilingual-gpt-neox-4b-instruction-sft).
|
49 |
+
* The second RL stage produces this model.
|
50 |
+
|
51 |
+
* **Reinforcement learning**
|
52 |
+
|
53 |
+
We used [CarperAI/trlx](https://github.com/CarperAI/trlx) and its implementation of the PPO algorithm for the RL stage.
|
54 |
+
|
55 |
+
The RL data is the subset of the following dataset and has been translated into Japanese.
|
56 |
+
* [Anthropic HH RLHF data](https://huggingface.co/datasets/Anthropic/hh-rlhf)
|
57 |
+
|
58 |
+
* **Model Series**
|
59 |
+
|
60 |
+
| Variant | Link |
|
61 |
+
| :-- | :--|
|
62 |
+
| Bilingual 4B MiniGPT4 | https://huggingface.co/rinna/bilingual-gpt-neox-4b-minigpt4 |
|
63 |
+
| Bilingual 4B PPO | https://huggingface.co/rinna/bilingual-gpt-neox-4b-instruction-ppo |
|
64 |
+
| Bilingual 4B SFT | https://huggingface.co/rinna/bilingual-gpt-neox-4b-instruction-sft |
|
65 |
+
| Bilingual 4B 8K | https://huggingface.co/rinna/bilingual-gpt-neox-4b-8k |
|
66 |
+
| Bilingual 4B | https://huggingface.co/rinna/bilingual-gpt-neox-4b |
|
67 |
+
| Japanese 3.6B PPO | https://huggingface.co/rinna/japanese-gpt-neox-3.6b-instruction-ppo |
|
68 |
+
| Japanese 3.6B SFT-v2 | https://huggingface.co/rinna/japanese-gpt-neox-3.6b-instruction-sft-v2 |
|
69 |
+
| Japanese 3.6B SFT | https://huggingface.co/rinna/japanese-gpt-neox-3.6b-instruction-sft |
|
70 |
+
| Japanese 3.6B | https://huggingface.co/rinna/japanese-gpt-neox-3.6b |
|
71 |
+
|
72 |
+
* **Contributors**
|
73 |
+
|
74 |
+
[Tianyu Zhao](https://huggingface.co/tianyuz) and [Kei Sawada](https://huggingface.co/keisawada)
|
75 |
+
|
76 |
+
---
|
77 |
+
|
78 |
+
# Benchmarking
|
79 |
+
|
80 |
+
Our evaluation experiments suggest that the PPO does not particularly improve the model's performance on the Japanese LLM benchmark in comparison with [Bilingual GPT-NeoX 4B SFT](https://huggingface.co/rinna/bilingual-gpt-neox-4b-instruction-sft), but we have seen **better conversation experience** on the PPO model than its SFT counterpart.
|
81 |
+
- *The 4-task average accuracy is based on results of JCommonsenseQA, JNLI, MARC-ja, and JSQuAD.*
|
82 |
+
- *The 6-task average accuracy is based on results of JCommonsenseQA, JNLI, MARC-ja, JSQuAD, XWinograd, and JAQKET-v2.*
|
83 |
+
|
84 |
+
| Model | 4-task average accuracy | 6-task average accuracy |
|
85 |
+
| :-- | :-- | :-- |
|
86 |
+
| **bilingual-gpt-neox-4b-instruction-ppo** | **61.01** | **61.16** |
|
87 |
+
| bilingual-gpt-neox-4b-instruction-sft | 61.02 | 61.69 |
|
88 |
+
| bilingual-gpt-neox-4b | 56.12 | 51.83 |
|
89 |
+
| japanese-gpt-neox-3.6b-instruction-ppo | 59.86 | 60.07 |
|
90 |
+
| japanese-gpt-neox-3.6b | 55.07 | 50.32 |
|
91 |
+
|
92 |
+
---
|
93 |
+
|
94 |
+
# I/O Format
|
95 |
+
A special format has been adopted to construct inputs.
|
96 |
+
* An input prompt is formatted as a conversation between `ユーザー` and `システム`.
|
97 |
+
* Each input utterance consists of (1) its speaker (`"ユーザー"` or `"システム"`), (2) a colon (`":"`), (3) a whitespace (`" "`), and (4) utterance text (e.g. `"世界で一番高い山は?"`).
|
98 |
+
* The input prompt should be ended with `"システム: "` to acknowledge the model to generate a response.
|
99 |
+
* All the utterances in the input prompt should be separated by a newline `\n`.
|
100 |
+
|
101 |
+
Following is an example to construct input from a conversation.
|
102 |
+
~~~python
|
103 |
+
prompt = [
|
104 |
+
{
|
105 |
+
"speaker": "ユーザー",
|
106 |
+
"text": "Hello, you are an assistant that helps me learn Japanese."
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"speaker": "システム",
|
110 |
+
"text": "Sure, what can I do for you?"
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"speaker": "ユーザー",
|
114 |
+
"text": "VRはなんですか。"
|
115 |
+
}
|
116 |
+
]
|
117 |
+
prompt = [
|
118 |
+
f"{uttr['speaker']}: {uttr['text']}"
|
119 |
+
for uttr in prompt
|
120 |
+
]
|
121 |
+
prompt = "\n".join(prompt)
|
122 |
+
prompt = (
|
123 |
+
prompt
|
124 |
+
+ "\n"
|
125 |
+
+ "システム: "
|
126 |
+
)
|
127 |
+
print(prompt)
|
128 |
+
"""
|
129 |
+
ユーザー: Hello, you are an assistant that helps me learn Japanese.
|
130 |
+
システム: Sure, what can I do for you?
|
131 |
+
ユーザー: VRはなんですか。
|
132 |
+
システム:
|
133 |
+
"""
|
134 |
+
~~~
|
135 |
+
|
136 |
+
---
|
137 |
+
|
138 |
+
# How to use the model
|
139 |
+
|
140 |
+
**Notice:** Since the model is **sensitive to decoding hyper-parameters** (e.g. `temperature`, `top_p`, `top_k`, `repetition_penalty`), it is suggested to explore the best setting for your task.
|
141 |
+
|
142 |
+
~~~~python
|
143 |
+
import torch
|
144 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
145 |
+
|
146 |
+
tokenizer = AutoTokenizer.from_pretrained("rinna/bilingual-gpt-neox-4b-instruction-ppo", use_fast=False)
|
147 |
+
model = AutoModelForCausalLM.from_pretrained("rinna/bilingual-gpt-neox-4b-instruction-ppo")
|
148 |
+
|
149 |
+
if torch.cuda.is_available():
|
150 |
+
model = model.to("cuda")
|
151 |
+
|
152 |
+
token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
|
153 |
+
|
154 |
+
with torch.no_grad():
|
155 |
+
output_ids = model.generate(
|
156 |
+
token_ids.to(model.device),
|
157 |
+
max_new_tokens=512,
|
158 |
+
do_sample=True,
|
159 |
+
temperature=1.0,
|
160 |
+
top_p=0.85,
|
161 |
+
pad_token_id=tokenizer.pad_token_id,
|
162 |
+
bos_token_id=tokenizer.bos_token_id,
|
163 |
+
eos_token_id=tokenizer.eos_token_id
|
164 |
+
)
|
165 |
+
|
166 |
+
output = tokenizer.decode(output_ids.tolist()[0][token_ids.size(1):])
|
167 |
+
print(output)
|
168 |
+
"""VRとはVirtual Realityの略で、仮想現実とも呼ばれます。これは、コンピューターを使用して仮想世界を作り出し、仮想世界上でコンピューターのゲームや仮想世界を体験するための技術です。この技術は、コンピューターやモバイ ルデバイスの進歩によって、2015年以降、ますます普及しています。VRは、ゲームや仮想世界、その他のアプリケー ションなどのさまざまな分野で、コンピューターと人間の相互作用の新しい方法を提供しています。</s>"""
|
169 |
+
~~~~
|
170 |
+
|
171 |
+
---
|
172 |
+
|
173 |
+
# Tokenization
|
174 |
+
The model uses a [sentencepiece](https://github.com/google/sentencepiece)-based tokenizer.
|
175 |
+
* The tokenizer has a vocabulary size of 65,536.
|
176 |
+
* It uses *byte fallback* to decompose unknown text pieces into UTF-8 byte pieces to avoid producing `<UNK>` tokens.
|
177 |
+
* It can recognize *consecutive whitespaces*, *newlines*, and *tabs* to handle structured texts better.
|
178 |
+
* We turned off the default behaviour of prepending leading whitespace because it is not beneficial for processing Japanese.
|
179 |
+
* Specifically, single whitespace is always processed as one token so that any English word won't have a preceding whitespace like in many other tokenizers (e.g. `_Hello`).
|
180 |
+
* This decision trades the English processing efficiency for a unified way to treat whitespaces.
|
181 |
+
* It leads to a significantly lower loss of next token prediction on English data because whitespaces are easy to predict.
|
182 |
+
* **Don't forget to set `use_fast=False` to make the above features function correctly.**
|
183 |
+
|
184 |
+
---
|
185 |
+
|
186 |
+
# How to cite
|
187 |
+
```bibtex
|
188 |
+
@misc{rinna-bilingual-gpt-neox-4b-instruction-ppo,
|
189 |
+
title = {rinna/bilingual-gpt-neox-4b-instruction-ppo},
|
190 |
+
author = {Zhao, Tianyu and Sawada, Kei},
|
191 |
+
url = {https://huggingface.co/rinna/bilingual-gpt-neox-4b-instruction-ppo}
|
192 |
+
}
|
193 |
+
|
194 |
+
@inproceedings{sawada2024release,
|
195 |
+
title = {Release of Pre-Trained Models for the {J}apanese Language},
|
196 |
+
author = {Sawada, Kei and Zhao, Tianyu and Shing, Makoto and Mitsui, Kentaro and Kaga, Akio and Hono, Yukiya and Wakatsuki, Toshiaki and Mitsuda, Koh},
|
197 |
+
booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)},
|
198 |
+
month = {5},
|
199 |
+
year = {2024},
|
200 |
+
pages = {13898--13905},
|
201 |
+
url = {https://aclanthology.org/2024.lrec-main.1213},
|
202 |
+
note = {\url{https://arxiv.org/abs/2404.01657}}
|
203 |
+
}
|
204 |
+
```
|
205 |
+
|
206 |
+
---
|
207 |
+
|
208 |
+
# Licenese
|
209 |
+
[The MIT license](https://opensource.org/licenses/MIT)
|
210 |
+
|