File size: 10,186 Bytes
1e93d42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
OpenMath-Mistral-7B-v0.1-hf - GGUF
- Model creator: https://huggingface.co/nvidia/
- Original model: https://huggingface.co/nvidia/OpenMath-Mistral-7B-v0.1-hf/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [OpenMath-Mistral-7B-v0.1-hf.Q2_K.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.Q2_K.gguf) | Q2_K | 2.53GB |
| [OpenMath-Mistral-7B-v0.1-hf.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.IQ3_XS.gguf) | IQ3_XS | 2.81GB |
| [OpenMath-Mistral-7B-v0.1-hf.IQ3_S.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.IQ3_S.gguf) | IQ3_S | 2.96GB |
| [OpenMath-Mistral-7B-v0.1-hf.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.Q3_K_S.gguf) | Q3_K_S | 2.95GB |
| [OpenMath-Mistral-7B-v0.1-hf.IQ3_M.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.IQ3_M.gguf) | IQ3_M | 3.06GB |
| [OpenMath-Mistral-7B-v0.1-hf.Q3_K.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.Q3_K.gguf) | Q3_K | 3.28GB |
| [OpenMath-Mistral-7B-v0.1-hf.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.Q3_K_M.gguf) | Q3_K_M | 3.28GB |
| [OpenMath-Mistral-7B-v0.1-hf.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.Q3_K_L.gguf) | Q3_K_L | 3.56GB |
| [OpenMath-Mistral-7B-v0.1-hf.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.IQ4_XS.gguf) | IQ4_XS | 3.67GB |
| [OpenMath-Mistral-7B-v0.1-hf.Q4_0.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.Q4_0.gguf) | Q4_0 | 3.83GB |
| [OpenMath-Mistral-7B-v0.1-hf.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.IQ4_NL.gguf) | IQ4_NL | 3.87GB |
| [OpenMath-Mistral-7B-v0.1-hf.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.Q4_K_S.gguf) | Q4_K_S | 3.86GB |
| [OpenMath-Mistral-7B-v0.1-hf.Q4_K.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.Q4_K.gguf) | Q4_K | 4.07GB |
| [OpenMath-Mistral-7B-v0.1-hf.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.Q4_K_M.gguf) | Q4_K_M | 4.07GB |
| [OpenMath-Mistral-7B-v0.1-hf.Q4_1.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.Q4_1.gguf) | Q4_1 | 4.24GB |
| [OpenMath-Mistral-7B-v0.1-hf.Q5_0.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.Q5_0.gguf) | Q5_0 | 4.65GB |
| [OpenMath-Mistral-7B-v0.1-hf.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.Q5_K_S.gguf) | Q5_K_S | 4.65GB |
| [OpenMath-Mistral-7B-v0.1-hf.Q5_K.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.Q5_K.gguf) | Q5_K | 4.78GB |
| [OpenMath-Mistral-7B-v0.1-hf.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.Q5_K_M.gguf) | Q5_K_M | 4.78GB |
| [OpenMath-Mistral-7B-v0.1-hf.Q5_1.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.Q5_1.gguf) | Q5_1 | 5.07GB |
| [OpenMath-Mistral-7B-v0.1-hf.Q6_K.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.Q6_K.gguf) | Q6_K | 5.53GB |
| [OpenMath-Mistral-7B-v0.1-hf.Q8_0.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.Q8_0.gguf) | Q8_0 | 7.17GB |
Original model description:
---
license: apache-2.0
base_model:
- mistralai/Mistral-7B-v0.1
datasets:
- nvidia/OpenMathInstruct-1
language:
- en
tags:
- nvidia
- code
- math
---
# OpenMath-Mistral-7B-v0.1-hf
OpenMath models were designed to solve mathematical problems by integrating text-based reasoning with code blocks
executed by Python interpreter. The models were trained on [OpenMathInstruct-1](https://huggingface.co/datasets/nvidia/OpenMathInstruct-1),
a math instruction tuning dataset with 1.8M problem-solution pairs generated using permissively licensed
[Mixtral-8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) model.
<table border="1">
<tr>
<td></td>
<td colspan="2" style="text-align: center;">greedy</td>
<td colspan="2" style="text-align: center;">majority@50</td>
</tr>
<tr>
<td style="text-align: center;">model</td>
<td style="text-align: center;">GSM8K</td>
<td style="text-align: center;">MATH</td>
<td style="text-align: center;">GMS8K</td>
<td style="text-align: center;">MATH</td>
</tr>
<tr>
<td style="text-align: right;">OpenMath-CodeLlama-7B (<a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-7b-Python">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-7b-Python-hf">HF</a>)</td>
<td style="text-align: center;">75.9</td>
<td style="text-align: center;">43.6</td>
<td style="text-align: center;">84.8</td>
<td style="text-align: center;">55.6</td>
</tr>
<tr>
<td style="text-align: right;">OpenMath-Mistral-7B (<a href="https://huggingface.co/nvidia/OpenMath-Mistral-7B-v0.1">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-Mistral-7B-v0.1-hf">HF</a>)</td>
<td style="text-align: center;">80.2</td>
<td style="text-align: center;">44.5</td>
<td style="text-align: center;">86.9</td>
<td style="text-align: center;">57.2</td>
</tr>
<tr>
<td style="text-align: right;">OpenMath-CodeLlama-13B (<a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-13b-Python">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-13b-Python-hf">HF</a>)</td>
<td style="text-align: center;">78.8</td>
<td style="text-align: center;">45.5</td>
<td style="text-align: center;">86.8</td>
<td style="text-align: center;">57.6</td>
</tr>
<tr>
<td style="text-align: right;">OpenMath-CodeLlama-34B (<a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-34b-Python">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-34b-Python-hf">HF</a>)</td>
<td style="text-align: center;">80.7</td>
<td style="text-align: center;">48.3</td>
<td style="text-align: center;">88.0</td>
<td style="text-align: center;">60.2</td>
</tr>
<tr>
<td style="text-align: right;">OpenMath-Llama2-70B (<a href="https://huggingface.co/nvidia/OpenMath-Llama-2-70b">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-Llama-2-70b-hf">HF</a>)</td>
<td style="text-align: center;"><b>84.7</b></td>
<td style="text-align: center;">46.3</td>
<td style="text-align: center;">90.1</td>
<td style="text-align: center;">58.3</td>
</tr>
<tr>
<td style="text-align: right;">OpenMath-CodeLlama-70B (<a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-70b-Python">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-70b-Python-hf">HF</a>)</td>
<td style="text-align: center;">84.6</td>
<td style="text-align: center;"><b>50.7</b></td>
<td style="text-align: center;"><b>90.8</b></td>
<td style="text-align: center;"><b>60.4</b></td>
</tr>
</table>
The pipeline we used to produce these models is fully open-sourced!
- [Code](https://github.com/Kipok/NeMo-Skills)
- [Models](https://huggingface.co/collections/nvidia/openmath-65c5619de2ba059be0775014)
- [Dataset](https://huggingface.co/datasets/nvidia/OpenMathInstruct-1)
See our [paper](https://arxiv.org/abs/2402.10176) for more details!
# How to use the models?
Try to [run inference with our models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/inference.md) with just a few commands!
# Reproducing our results
We provide [all instructions](https://github.com/Kipok/NeMo-Skills/blob/main/docs/reproducing-results.md) to fully reproduce our results.
# Improving other models
To improve other models or to learn more about our code, read through the docs below.
- [NeMo-Skills Pipeline](https://github.com/Kipok/NeMo-Skills)
- [Generating synthetic data](https://github.com/Kipok/NeMo-Skills/blob/main/docs/synthetic-data-generation.md)
- [Finetuning models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/finetuning.md)
- [Evaluating models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/evaluation.md)
In our pipeline we use [NVIDIA NeMo](https://www.nvidia.com/en-us/ai-data-science/generative-ai/nemo-framework/),
an end-to-end, cloud-native framework to build, customize, and deploy generative AI models anywhere.
It includes training and inferencing frameworks, guardrailing toolkits, data curation tools, and pretrained models,
offering enterprises an easy, cost-effective, and fast way to adopt generative AI.
# Citation
If you find our work useful, please consider citing us!
```bibtex
@article{toshniwal2024openmath,
title = {OpenMathInstruct-1: A 1.8 Million Math Instruction Tuning Dataset},
author = {Shubham Toshniwal and Ivan Moshkov and Sean Narenthiran and Daria Gitman and Fei Jia and Igor Gitman},
year = {2024},
journal = {arXiv preprint arXiv: Arxiv-2402.10176}
}
```
|