File size: 10,186 Bytes
1e93d42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
Quantization made by Richard Erkhov.

[Github](https://github.com/RichardErkhov)

[Discord](https://discord.gg/pvy7H8DZMG)

[Request more models](https://github.com/RichardErkhov/quant_request)


OpenMath-Mistral-7B-v0.1-hf - GGUF
- Model creator: https://huggingface.co/nvidia/
- Original model: https://huggingface.co/nvidia/OpenMath-Mistral-7B-v0.1-hf/


| Name | Quant method | Size |
| ---- | ---- | ---- |
| [OpenMath-Mistral-7B-v0.1-hf.Q2_K.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.Q2_K.gguf) | Q2_K | 2.53GB |
| [OpenMath-Mistral-7B-v0.1-hf.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.IQ3_XS.gguf) | IQ3_XS | 2.81GB |
| [OpenMath-Mistral-7B-v0.1-hf.IQ3_S.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.IQ3_S.gguf) | IQ3_S | 2.96GB |
| [OpenMath-Mistral-7B-v0.1-hf.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.Q3_K_S.gguf) | Q3_K_S | 2.95GB |
| [OpenMath-Mistral-7B-v0.1-hf.IQ3_M.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.IQ3_M.gguf) | IQ3_M | 3.06GB |
| [OpenMath-Mistral-7B-v0.1-hf.Q3_K.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.Q3_K.gguf) | Q3_K | 3.28GB |
| [OpenMath-Mistral-7B-v0.1-hf.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.Q3_K_M.gguf) | Q3_K_M | 3.28GB |
| [OpenMath-Mistral-7B-v0.1-hf.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.Q3_K_L.gguf) | Q3_K_L | 3.56GB |
| [OpenMath-Mistral-7B-v0.1-hf.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.IQ4_XS.gguf) | IQ4_XS | 3.67GB |
| [OpenMath-Mistral-7B-v0.1-hf.Q4_0.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.Q4_0.gguf) | Q4_0 | 3.83GB |
| [OpenMath-Mistral-7B-v0.1-hf.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.IQ4_NL.gguf) | IQ4_NL | 3.87GB |
| [OpenMath-Mistral-7B-v0.1-hf.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.Q4_K_S.gguf) | Q4_K_S | 3.86GB |
| [OpenMath-Mistral-7B-v0.1-hf.Q4_K.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.Q4_K.gguf) | Q4_K | 4.07GB |
| [OpenMath-Mistral-7B-v0.1-hf.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.Q4_K_M.gguf) | Q4_K_M | 4.07GB |
| [OpenMath-Mistral-7B-v0.1-hf.Q4_1.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.Q4_1.gguf) | Q4_1 | 4.24GB |
| [OpenMath-Mistral-7B-v0.1-hf.Q5_0.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.Q5_0.gguf) | Q5_0 | 4.65GB |
| [OpenMath-Mistral-7B-v0.1-hf.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.Q5_K_S.gguf) | Q5_K_S | 4.65GB |
| [OpenMath-Mistral-7B-v0.1-hf.Q5_K.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.Q5_K.gguf) | Q5_K | 4.78GB |
| [OpenMath-Mistral-7B-v0.1-hf.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.Q5_K_M.gguf) | Q5_K_M | 4.78GB |
| [OpenMath-Mistral-7B-v0.1-hf.Q5_1.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.Q5_1.gguf) | Q5_1 | 5.07GB |
| [OpenMath-Mistral-7B-v0.1-hf.Q6_K.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.Q6_K.gguf) | Q6_K | 5.53GB |
| [OpenMath-Mistral-7B-v0.1-hf.Q8_0.gguf](https://huggingface.co/RichardErkhov/nvidia_-_OpenMath-Mistral-7B-v0.1-hf-gguf/blob/main/OpenMath-Mistral-7B-v0.1-hf.Q8_0.gguf) | Q8_0 | 7.17GB |




Original model description:
---
license: apache-2.0
base_model:
- mistralai/Mistral-7B-v0.1
datasets:
- nvidia/OpenMathInstruct-1
language:
- en
tags:
- nvidia
- code
- math
---


# OpenMath-Mistral-7B-v0.1-hf

OpenMath models were designed to solve mathematical problems by integrating text-based reasoning with code blocks
executed by Python interpreter. The models were trained on [OpenMathInstruct-1](https://huggingface.co/datasets/nvidia/OpenMathInstruct-1),
a math instruction tuning dataset with 1.8M problem-solution pairs generated using permissively licensed
[Mixtral-8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) model.

<table border="1">
  <tr>
    <td></td>
    <td colspan="2" style="text-align: center;">greedy</td>
    <td colspan="2" style="text-align: center;">majority@50</td>
  </tr>
  <tr>
    <td style="text-align: center;">model</td>
    <td style="text-align: center;">GSM8K</td>
    <td style="text-align: center;">MATH</td>
    <td style="text-align: center;">GMS8K</td>
    <td style="text-align: center;">MATH</td>
  </tr>
  <tr>
    <td style="text-align: right;">OpenMath-CodeLlama-7B (<a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-7b-Python">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-7b-Python-hf">HF</a>)</td>
    <td style="text-align: center;">75.9</td>
    <td style="text-align: center;">43.6</td>
    <td style="text-align: center;">84.8</td>
    <td style="text-align: center;">55.6</td>
  </tr>
  <tr>
    <td style="text-align: right;">OpenMath-Mistral-7B (<a href="https://huggingface.co/nvidia/OpenMath-Mistral-7B-v0.1">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-Mistral-7B-v0.1-hf">HF</a>)</td>
    <td style="text-align: center;">80.2</td>
    <td style="text-align: center;">44.5</td>
    <td style="text-align: center;">86.9</td>
    <td style="text-align: center;">57.2</td>
  </tr>
  <tr>
    <td style="text-align: right;">OpenMath-CodeLlama-13B (<a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-13b-Python">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-13b-Python-hf">HF</a>)</td>
    <td style="text-align: center;">78.8</td>
    <td style="text-align: center;">45.5</td>
    <td style="text-align: center;">86.8</td>
    <td style="text-align: center;">57.6</td>
  </tr>
  <tr>
    <td style="text-align: right;">OpenMath-CodeLlama-34B (<a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-34b-Python">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-34b-Python-hf">HF</a>)</td>
    <td style="text-align: center;">80.7</td>
    <td style="text-align: center;">48.3</td>
    <td style="text-align: center;">88.0</td>
    <td style="text-align: center;">60.2</td>
  </tr>
  <tr>
    <td style="text-align: right;">OpenMath-Llama2-70B (<a href="https://huggingface.co/nvidia/OpenMath-Llama-2-70b">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-Llama-2-70b-hf">HF</a>)</td>
    <td style="text-align: center;"><b>84.7</b></td>
    <td style="text-align: center;">46.3</td>
    <td style="text-align: center;">90.1</td>
    <td style="text-align: center;">58.3</td>
  </tr>
  <tr>
    <td style="text-align: right;">OpenMath-CodeLlama-70B (<a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-70b-Python">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-70b-Python-hf">HF</a>)</td>
    <td style="text-align: center;">84.6</td>
    <td style="text-align: center;"><b>50.7</b></td>
    <td style="text-align: center;"><b>90.8</b></td>
    <td style="text-align: center;"><b>60.4</b></td>
  </tr>
</table>

The pipeline we used to produce these models is fully open-sourced!

- [Code](https://github.com/Kipok/NeMo-Skills)
- [Models](https://huggingface.co/collections/nvidia/openmath-65c5619de2ba059be0775014)
- [Dataset](https://huggingface.co/datasets/nvidia/OpenMathInstruct-1)

See our [paper](https://arxiv.org/abs/2402.10176) for more details!

# How to use the models?

Try to [run inference with our models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/inference.md) with just a few commands!

# Reproducing our results

We provide [all instructions](https://github.com/Kipok/NeMo-Skills/blob/main/docs/reproducing-results.md) to fully reproduce our results.

# Improving other models

To improve other models or to learn more about our code, read through the docs below.

- [NeMo-Skills Pipeline](https://github.com/Kipok/NeMo-Skills)
    - [Generating synthetic data](https://github.com/Kipok/NeMo-Skills/blob/main/docs/synthetic-data-generation.md)
    - [Finetuning models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/finetuning.md)
    - [Evaluating models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/evaluation.md)

In our pipeline we use [NVIDIA NeMo](https://www.nvidia.com/en-us/ai-data-science/generative-ai/nemo-framework/),
an end-to-end, cloud-native framework to build, customize, and deploy generative AI models anywhere.
It includes training and inferencing frameworks, guardrailing toolkits, data curation tools, and pretrained models,
offering enterprises an easy, cost-effective, and fast way to adopt generative AI.

# Citation

If you find our work useful, please consider citing us!

```bibtex
@article{toshniwal2024openmath,
  title   = {OpenMathInstruct-1: A 1.8 Million Math Instruction Tuning Dataset},
  author  = {Shubham Toshniwal and Ivan Moshkov and Sean Narenthiran and Daria Gitman and Fei Jia and Igor Gitman},
  year    = {2024},
  journal = {arXiv preprint arXiv: Arxiv-2402.10176}
}
```