RichardErkhov commited on
Commit
9dac05c
1 Parent(s): e9a1a65

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +143 -0
README.md ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ OpenMath-CodeLlama-7b-Python-hf - bnb 8bits
11
+ - Model creator: https://huggingface.co/nvidia/
12
+ - Original model: https://huggingface.co/nvidia/OpenMath-CodeLlama-7b-Python-hf/
13
+
14
+
15
+
16
+
17
+ Original model description:
18
+ ---
19
+ license: llama2
20
+ base_model:
21
+ - codellama/CodeLlama-7b-Python-hf
22
+ datasets:
23
+ - nvidia/OpenMathInstruct-1
24
+ language:
25
+ - en
26
+ tags:
27
+ - nvidia
28
+ - code
29
+ - math
30
+ ---
31
+
32
+
33
+ # OpenMath-CodeLlama-7b-Python-hf
34
+
35
+ OpenMath models were designed to solve mathematical problems by integrating text-based reasoning with code blocks
36
+ executed by Python interpreter. The models were trained on [OpenMathInstruct-1](https://huggingface.co/datasets/nvidia/OpenMathInstruct-1),
37
+ a math instruction tuning dataset with 1.8M problem-solution pairs generated using permissively licensed
38
+ [Mixtral-8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) model.
39
+
40
+ <table border="1">
41
+ <tr>
42
+ <td></td>
43
+ <td colspan="2" style="text-align: center;">greedy</td>
44
+ <td colspan="2" style="text-align: center;">majority@50</td>
45
+ </tr>
46
+ <tr>
47
+ <td style="text-align: center;">model</td>
48
+ <td style="text-align: center;">GSM8K</td>
49
+ <td style="text-align: center;">MATH</td>
50
+ <td style="text-align: center;">GMS8K</td>
51
+ <td style="text-align: center;">MATH</td>
52
+ </tr>
53
+ <tr>
54
+ <td style="text-align: right;">OpenMath-CodeLlama-7B (<a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-7b-Python">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-7b-Python-hf">HF</a>)</td>
55
+ <td style="text-align: center;">75.9</td>
56
+ <td style="text-align: center;">43.6</td>
57
+ <td style="text-align: center;">84.8</td>
58
+ <td style="text-align: center;">55.6</td>
59
+ </tr>
60
+ <tr>
61
+ <td style="text-align: right;">OpenMath-Mistral-7B (<a href="https://huggingface.co/nvidia/OpenMath-Mistral-7B-v0.1">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-Mistral-7B-v0.1-hf">HF</a>)</td>
62
+ <td style="text-align: center;">80.2</td>
63
+ <td style="text-align: center;">44.5</td>
64
+ <td style="text-align: center;">86.9</td>
65
+ <td style="text-align: center;">57.2</td>
66
+ </tr>
67
+ <tr>
68
+ <td style="text-align: right;">OpenMath-CodeLlama-13B (<a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-13b-Python">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-13b-Python-hf">HF</a>)</td>
69
+ <td style="text-align: center;">78.8</td>
70
+ <td style="text-align: center;">45.5</td>
71
+ <td style="text-align: center;">86.8</td>
72
+ <td style="text-align: center;">57.6</td>
73
+ </tr>
74
+ <tr>
75
+ <td style="text-align: right;">OpenMath-CodeLlama-34B (<a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-34b-Python">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-34b-Python-hf">HF</a>)</td>
76
+ <td style="text-align: center;">80.7</td>
77
+ <td style="text-align: center;">48.3</td>
78
+ <td style="text-align: center;">88.0</td>
79
+ <td style="text-align: center;">60.2</td>
80
+ </tr>
81
+ <tr>
82
+ <td style="text-align: right;">OpenMath-Llama2-70B (<a href="https://huggingface.co/nvidia/OpenMath-Llama-2-70b">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-Llama-2-70b-hf">HF</a>)</td>
83
+ <td style="text-align: center;"><b>84.7</b></td>
84
+ <td style="text-align: center;">46.3</td>
85
+ <td style="text-align: center;">90.1</td>
86
+ <td style="text-align: center;">58.3</td>
87
+ </tr>
88
+ <tr>
89
+ <td style="text-align: right;">OpenMath-CodeLlama-70B (<a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-70b-Python">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-70b-Python-hf">HF</a>)</td>
90
+ <td style="text-align: center;">84.6</td>
91
+ <td style="text-align: center;"><b>50.7</b></td>
92
+ <td style="text-align: center;"><b>90.8</b></td>
93
+ <td style="text-align: center;"><b>60.4</b></td>
94
+ </tr>
95
+ </table>
96
+
97
+ The pipeline we used to produce these models is fully open-sourced!
98
+
99
+ - [Code](https://github.com/Kipok/NeMo-Skills)
100
+ - [Models](https://huggingface.co/collections/nvidia/openmath-65c5619de2ba059be0775014)
101
+ - [Dataset](https://huggingface.co/datasets/nvidia/OpenMathInstruct-1)
102
+
103
+ See our [paper](https://arxiv.org/abs/2402.10176) for more details!
104
+
105
+ # How to use the models?
106
+
107
+ Try to [run inference with our models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/inference.md) with just a few commands!
108
+
109
+ # Reproducing our results
110
+
111
+ We provide [all instructions](https://github.com/Kipok/NeMo-Skills/blob/main/docs/reproducing-results.md) to fully reproduce our results.
112
+
113
+ # Improving other models
114
+
115
+ To improve other models or to learn more about our code, read through the docs below.
116
+
117
+ - [NeMo-Skills Pipeline](https://github.com/Kipok/NeMo-Skills)
118
+ - [Generating synthetic data](https://github.com/Kipok/NeMo-Skills/blob/main/docs/synthetic-data-generation.md)
119
+ - [Finetuning models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/finetuning.md)
120
+ - [Evaluating models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/evaluation.md)
121
+
122
+ In our pipeline we use [NVIDIA NeMo](https://www.nvidia.com/en-us/ai-data-science/generative-ai/nemo-framework/),
123
+ an end-to-end, cloud-native framework to build, customize, and deploy generative AI models anywhere.
124
+ It includes training and inferencing frameworks, guardrailing toolkits, data curation tools, and pretrained models,
125
+ offering enterprises an easy, cost-effective, and fast way to adopt generative AI.
126
+
127
+ # Citation
128
+
129
+ If you find our work useful, please consider citing us!
130
+
131
+ ```bibtex
132
+ @article{toshniwal2024openmath,
133
+ title = {OpenMathInstruct-1: A 1.8 Million Math Instruction Tuning Dataset},
134
+ author = {Shubham Toshniwal and Ivan Moshkov and Sean Narenthiran and Daria Gitman and Fei Jia and Igor Gitman},
135
+ year = {2024},
136
+ journal = {arXiv preprint arXiv: Arxiv-2402.10176}
137
+ }
138
+ ```
139
+
140
+ # License
141
+
142
+ The use of this model is governed by the [Llama 2 Community License Agreement](https://ai.meta.com/llama/license/)
143
+