File size: 6,756 Bytes
2786aa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
Quantization made by Richard Erkhov.

[Github](https://github.com/RichardErkhov)

[Discord](https://discord.gg/pvy7H8DZMG)

[Request more models](https://github.com/RichardErkhov/quant_request)


Llama-2-7b-evolcodealpaca - GGUF
- Model creator: https://huggingface.co/neuralmagic/
- Original model: https://huggingface.co/neuralmagic/Llama-2-7b-evolcodealpaca/


| Name | Quant method | Size |
| ---- | ---- | ---- |
| [Llama-2-7b-evolcodealpaca.Q2_K.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.Q2_K.gguf) | Q2_K | 2.36GB |
| [Llama-2-7b-evolcodealpaca.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.IQ3_XS.gguf) | IQ3_XS | 2.6GB |
| [Llama-2-7b-evolcodealpaca.IQ3_S.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.IQ3_S.gguf) | IQ3_S | 2.75GB |
| [Llama-2-7b-evolcodealpaca.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.Q3_K_S.gguf) | Q3_K_S | 2.75GB |
| [Llama-2-7b-evolcodealpaca.IQ3_M.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.IQ3_M.gguf) | IQ3_M | 2.9GB |
| [Llama-2-7b-evolcodealpaca.Q3_K.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.Q3_K.gguf) | Q3_K | 3.07GB |
| [Llama-2-7b-evolcodealpaca.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.Q3_K_M.gguf) | Q3_K_M | 3.07GB |
| [Llama-2-7b-evolcodealpaca.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.Q3_K_L.gguf) | Q3_K_L | 3.35GB |
| [Llama-2-7b-evolcodealpaca.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.IQ4_XS.gguf) | IQ4_XS | 3.4GB |
| [Llama-2-7b-evolcodealpaca.Q4_0.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.Q4_0.gguf) | Q4_0 | 3.56GB |
| [Llama-2-7b-evolcodealpaca.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.IQ4_NL.gguf) | IQ4_NL | 3.58GB |
| [Llama-2-7b-evolcodealpaca.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.Q4_K_S.gguf) | Q4_K_S | 3.59GB |
| [Llama-2-7b-evolcodealpaca.Q4_K.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.Q4_K.gguf) | Q4_K | 3.8GB |
| [Llama-2-7b-evolcodealpaca.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.Q4_K_M.gguf) | Q4_K_M | 3.8GB |
| [Llama-2-7b-evolcodealpaca.Q4_1.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.Q4_1.gguf) | Q4_1 | 3.95GB |
| [Llama-2-7b-evolcodealpaca.Q5_0.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.Q5_0.gguf) | Q5_0 | 4.33GB |
| [Llama-2-7b-evolcodealpaca.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.Q5_K_S.gguf) | Q5_K_S | 4.33GB |
| [Llama-2-7b-evolcodealpaca.Q5_K.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.Q5_K.gguf) | Q5_K | 4.45GB |
| [Llama-2-7b-evolcodealpaca.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.Q5_K_M.gguf) | Q5_K_M | 4.45GB |
| [Llama-2-7b-evolcodealpaca.Q5_1.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.Q5_1.gguf) | Q5_1 | 4.72GB |
| [Llama-2-7b-evolcodealpaca.Q6_K.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.Q6_K.gguf) | Q6_K | 5.15GB |




Original model description:
---
base_model: meta-llama/Llama-2-7b-hf
inference: true
model_type: llama
pipeline_tag: text-generation
datasets:
  - theblackcat102/evol-codealpaca-v1
tags:
- code
---

# Llama-2-7b-evolcodealpaca

This repo contains a [Llama 2 7B](https://huggingface.co/meta-llama/Llama-2-7b-hf) finetuned for code generation tasks using the [Evolved CodeAlpaca](https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1) dataset.

Official model weights from [Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment](https://arxiv.org/abs/2405.03594).

**Authors**: Neural Magic, Cerebras

## Usage

Below we share some code snippets on how to get quickly started with running the model.

### Sparse Transfer

By leveraging a pre-sparsified model's structure, you can efficiently fine-tune on new data, leading to reduced hyperparameter tuning, training times, and computational costs. Learn about this process [here](https://neuralmagic.github.io/docs-v2/get-started/transfer).

### Running the model

This model may be run with the transformers library. For accelerated inference with sparsity, deploy with [nm-vllm](https://github.com/neuralmagic/nm-vllm) or [deepsparse](https://github.com/neuralmagic/deepsparse).

```python
# pip install transformers accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("neuralmagic/Llama-2-7b-evolcodealpaca")
model = AutoModelForCausalLM.from_pretrained("neuralmagic/Llama-2-7b-evolcodealpaca", device_map="auto")

input_text = "def fibonacci(n):\n"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")

outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
```

## Evaluation Benchmark Results

Model evaluation metrics and results.

| Benchmark                                      | Metric        | Llama-2-7b-evolcodealpaca  |
|------------------------------------------------|---------------|-------------|
| [HumanEval](https://arxiv.org/abs/2107.03374)  | pass@1        | 32.03       |

## Model Training Details

Coming soon.

## Help

For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)