File size: 6,756 Bytes
2786aa1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
Llama-2-7b-evolcodealpaca - GGUF
- Model creator: https://huggingface.co/neuralmagic/
- Original model: https://huggingface.co/neuralmagic/Llama-2-7b-evolcodealpaca/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [Llama-2-7b-evolcodealpaca.Q2_K.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.Q2_K.gguf) | Q2_K | 2.36GB |
| [Llama-2-7b-evolcodealpaca.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.IQ3_XS.gguf) | IQ3_XS | 2.6GB |
| [Llama-2-7b-evolcodealpaca.IQ3_S.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.IQ3_S.gguf) | IQ3_S | 2.75GB |
| [Llama-2-7b-evolcodealpaca.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.Q3_K_S.gguf) | Q3_K_S | 2.75GB |
| [Llama-2-7b-evolcodealpaca.IQ3_M.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.IQ3_M.gguf) | IQ3_M | 2.9GB |
| [Llama-2-7b-evolcodealpaca.Q3_K.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.Q3_K.gguf) | Q3_K | 3.07GB |
| [Llama-2-7b-evolcodealpaca.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.Q3_K_M.gguf) | Q3_K_M | 3.07GB |
| [Llama-2-7b-evolcodealpaca.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.Q3_K_L.gguf) | Q3_K_L | 3.35GB |
| [Llama-2-7b-evolcodealpaca.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.IQ4_XS.gguf) | IQ4_XS | 3.4GB |
| [Llama-2-7b-evolcodealpaca.Q4_0.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.Q4_0.gguf) | Q4_0 | 3.56GB |
| [Llama-2-7b-evolcodealpaca.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.IQ4_NL.gguf) | IQ4_NL | 3.58GB |
| [Llama-2-7b-evolcodealpaca.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.Q4_K_S.gguf) | Q4_K_S | 3.59GB |
| [Llama-2-7b-evolcodealpaca.Q4_K.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.Q4_K.gguf) | Q4_K | 3.8GB |
| [Llama-2-7b-evolcodealpaca.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.Q4_K_M.gguf) | Q4_K_M | 3.8GB |
| [Llama-2-7b-evolcodealpaca.Q4_1.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.Q4_1.gguf) | Q4_1 | 3.95GB |
| [Llama-2-7b-evolcodealpaca.Q5_0.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.Q5_0.gguf) | Q5_0 | 4.33GB |
| [Llama-2-7b-evolcodealpaca.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.Q5_K_S.gguf) | Q5_K_S | 4.33GB |
| [Llama-2-7b-evolcodealpaca.Q5_K.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.Q5_K.gguf) | Q5_K | 4.45GB |
| [Llama-2-7b-evolcodealpaca.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.Q5_K_M.gguf) | Q5_K_M | 4.45GB |
| [Llama-2-7b-evolcodealpaca.Q5_1.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.Q5_1.gguf) | Q5_1 | 4.72GB |
| [Llama-2-7b-evolcodealpaca.Q6_K.gguf](https://huggingface.co/RichardErkhov/neuralmagic_-_Llama-2-7b-evolcodealpaca-gguf/blob/main/Llama-2-7b-evolcodealpaca.Q6_K.gguf) | Q6_K | 5.15GB |
Original model description:
---
base_model: meta-llama/Llama-2-7b-hf
inference: true
model_type: llama
pipeline_tag: text-generation
datasets:
- theblackcat102/evol-codealpaca-v1
tags:
- code
---
# Llama-2-7b-evolcodealpaca
This repo contains a [Llama 2 7B](https://huggingface.co/meta-llama/Llama-2-7b-hf) finetuned for code generation tasks using the [Evolved CodeAlpaca](https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1) dataset.
Official model weights from [Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment](https://arxiv.org/abs/2405.03594).
**Authors**: Neural Magic, Cerebras
## Usage
Below we share some code snippets on how to get quickly started with running the model.
### Sparse Transfer
By leveraging a pre-sparsified model's structure, you can efficiently fine-tune on new data, leading to reduced hyperparameter tuning, training times, and computational costs. Learn about this process [here](https://neuralmagic.github.io/docs-v2/get-started/transfer).
### Running the model
This model may be run with the transformers library. For accelerated inference with sparsity, deploy with [nm-vllm](https://github.com/neuralmagic/nm-vllm) or [deepsparse](https://github.com/neuralmagic/deepsparse).
```python
# pip install transformers accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("neuralmagic/Llama-2-7b-evolcodealpaca")
model = AutoModelForCausalLM.from_pretrained("neuralmagic/Llama-2-7b-evolcodealpaca", device_map="auto")
input_text = "def fibonacci(n):\n"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
```
## Evaluation Benchmark Results
Model evaluation metrics and results.
| Benchmark | Metric | Llama-2-7b-evolcodealpaca |
|------------------------------------------------|---------------|-------------|
| [HumanEval](https://arxiv.org/abs/2107.03374) | pass@1 | 32.03 |
## Model Training Details
Coming soon.
## Help
For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)
|