File size: 7,883 Bytes
40d7255 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
MetaMath-Mistral-2x7B - GGUF
- Model creator: https://huggingface.co/harshitv804/
- Original model: https://huggingface.co/harshitv804/MetaMath-Mistral-2x7B/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [MetaMath-Mistral-2x7B.Q2_K.gguf](https://huggingface.co/RichardErkhov/harshitv804_-_MetaMath-Mistral-2x7B-gguf/blob/main/MetaMath-Mistral-2x7B.Q2_K.gguf) | Q2_K | 2.53GB |
| [MetaMath-Mistral-2x7B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/harshitv804_-_MetaMath-Mistral-2x7B-gguf/blob/main/MetaMath-Mistral-2x7B.IQ3_XS.gguf) | IQ3_XS | 2.81GB |
| [MetaMath-Mistral-2x7B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/harshitv804_-_MetaMath-Mistral-2x7B-gguf/blob/main/MetaMath-Mistral-2x7B.IQ3_S.gguf) | IQ3_S | 2.96GB |
| [MetaMath-Mistral-2x7B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/harshitv804_-_MetaMath-Mistral-2x7B-gguf/blob/main/MetaMath-Mistral-2x7B.Q3_K_S.gguf) | Q3_K_S | 2.95GB |
| [MetaMath-Mistral-2x7B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/harshitv804_-_MetaMath-Mistral-2x7B-gguf/blob/main/MetaMath-Mistral-2x7B.IQ3_M.gguf) | IQ3_M | 3.06GB |
| [MetaMath-Mistral-2x7B.Q3_K.gguf](https://huggingface.co/RichardErkhov/harshitv804_-_MetaMath-Mistral-2x7B-gguf/blob/main/MetaMath-Mistral-2x7B.Q3_K.gguf) | Q3_K | 3.28GB |
| [MetaMath-Mistral-2x7B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/harshitv804_-_MetaMath-Mistral-2x7B-gguf/blob/main/MetaMath-Mistral-2x7B.Q3_K_M.gguf) | Q3_K_M | 3.28GB |
| [MetaMath-Mistral-2x7B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/harshitv804_-_MetaMath-Mistral-2x7B-gguf/blob/main/MetaMath-Mistral-2x7B.Q3_K_L.gguf) | Q3_K_L | 3.56GB |
| [MetaMath-Mistral-2x7B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/harshitv804_-_MetaMath-Mistral-2x7B-gguf/blob/main/MetaMath-Mistral-2x7B.IQ4_XS.gguf) | IQ4_XS | 3.67GB |
| [MetaMath-Mistral-2x7B.Q4_0.gguf](https://huggingface.co/RichardErkhov/harshitv804_-_MetaMath-Mistral-2x7B-gguf/blob/main/MetaMath-Mistral-2x7B.Q4_0.gguf) | Q4_0 | 3.83GB |
| [MetaMath-Mistral-2x7B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/harshitv804_-_MetaMath-Mistral-2x7B-gguf/blob/main/MetaMath-Mistral-2x7B.IQ4_NL.gguf) | IQ4_NL | 3.87GB |
| [MetaMath-Mistral-2x7B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/harshitv804_-_MetaMath-Mistral-2x7B-gguf/blob/main/MetaMath-Mistral-2x7B.Q4_K_S.gguf) | Q4_K_S | 3.86GB |
| [MetaMath-Mistral-2x7B.Q4_K.gguf](https://huggingface.co/RichardErkhov/harshitv804_-_MetaMath-Mistral-2x7B-gguf/blob/main/MetaMath-Mistral-2x7B.Q4_K.gguf) | Q4_K | 4.07GB |
| [MetaMath-Mistral-2x7B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/harshitv804_-_MetaMath-Mistral-2x7B-gguf/blob/main/MetaMath-Mistral-2x7B.Q4_K_M.gguf) | Q4_K_M | 4.07GB |
| [MetaMath-Mistral-2x7B.Q4_1.gguf](https://huggingface.co/RichardErkhov/harshitv804_-_MetaMath-Mistral-2x7B-gguf/blob/main/MetaMath-Mistral-2x7B.Q4_1.gguf) | Q4_1 | 4.24GB |
| [MetaMath-Mistral-2x7B.Q5_0.gguf](https://huggingface.co/RichardErkhov/harshitv804_-_MetaMath-Mistral-2x7B-gguf/blob/main/MetaMath-Mistral-2x7B.Q5_0.gguf) | Q5_0 | 4.65GB |
| [MetaMath-Mistral-2x7B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/harshitv804_-_MetaMath-Mistral-2x7B-gguf/blob/main/MetaMath-Mistral-2x7B.Q5_K_S.gguf) | Q5_K_S | 4.65GB |
| [MetaMath-Mistral-2x7B.Q5_K.gguf](https://huggingface.co/RichardErkhov/harshitv804_-_MetaMath-Mistral-2x7B-gguf/blob/main/MetaMath-Mistral-2x7B.Q5_K.gguf) | Q5_K | 4.78GB |
| [MetaMath-Mistral-2x7B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/harshitv804_-_MetaMath-Mistral-2x7B-gguf/blob/main/MetaMath-Mistral-2x7B.Q5_K_M.gguf) | Q5_K_M | 4.78GB |
| [MetaMath-Mistral-2x7B.Q5_1.gguf](https://huggingface.co/RichardErkhov/harshitv804_-_MetaMath-Mistral-2x7B-gguf/blob/main/MetaMath-Mistral-2x7B.Q5_1.gguf) | Q5_1 | 5.07GB |
| [MetaMath-Mistral-2x7B.Q6_K.gguf](https://huggingface.co/RichardErkhov/harshitv804_-_MetaMath-Mistral-2x7B-gguf/blob/main/MetaMath-Mistral-2x7B.Q6_K.gguf) | Q6_K | 5.53GB |
| [MetaMath-Mistral-2x7B.Q8_0.gguf](https://huggingface.co/RichardErkhov/harshitv804_-_MetaMath-Mistral-2x7B-gguf/blob/main/MetaMath-Mistral-2x7B.Q8_0.gguf) | Q8_0 | 7.17GB |
Original model description:
---
base_model:
- meta-math/MetaMath-Mistral-7B
tags:
- mergekit
- merge
- meta-math/MetaMath-Mistral-7B
- Mixture of Experts
license: apache-2.0
language:
- en
pipeline_tag: text-generation
library_name: transformers
---
![image/png](https://cdn-uploads.huggingface.co/production/uploads/63060761cb5492c9859b64ea/BfR-Giwmh_3R-ymdeiI5k.png)
This is MetaMath-Mistral-2x7B Mixture of Experts (MOE) model created using [mergekit](https://github.com/cg123/mergekit) for experimental and learning purpose of MOE.
## Merge Details
### Merge Method
This model was merged using the SLERP merge method using [meta-math/MetaMath-Mistral-7B](https://huggingface.co/meta-math/MetaMath-Mistral-7B) as the base model.
### Models Merged
The following models were included in the merge:
* [meta-math/MetaMath-Mistral-7B](https://huggingface.co/meta-math/MetaMath-Mistral-7B) x 2
### Configuration
The following YAML configuration was used to produce this model:
```yaml
slices:
- sources:
- model: meta-math/MetaMath-Mistral-7B
layer_range: [0, 32]
- model: meta-math/MetaMath-Mistral-7B
layer_range: [0, 32]
merge_method: slerp
base_model: meta-math/MetaMath-Mistral-7B
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
```
## Inference Code
```python
## install dependencies
## !pip install -q -U git+https://github.com/huggingface/transformers.git
## !pip install -q -U git+https://github.com/huggingface/accelerate.git
## !pip install -q -U sentencepiece
## load model
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
model_name = "harshitv804/MetaMath-Mistral-2x7B"
# load the model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True
)
tokenizer.pad_token = tokenizer.eos_token
## inference
query = "Maximoff's monthly bill is $60 per month. His monthly bill increased by thirty percent when he started working at home. How much is his total monthly bill working from home?"
prompt =f"""
Below is an instruction that describes a task. Write a response that appropriately completes the request.\n
### Instruction:\n
{query}\n
### Response: Let's think step by step.
"""
# tokenize the input string
inputs = tokenizer(
prompt,
return_tensors="pt",
return_attention_mask=False
)
# generate text using the model
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
outputs = model.generate(**inputs, max_length=2048, streamer=streamer)
# decode and print the output
text = tokenizer.batch_decode(outputs)[0]
```
## Citation
```bibtex
@article{yu2023metamath,
title={MetaMath: Bootstrap Your Own Mathematical Questions for Large Language Models},
author={Yu, Longhui and Jiang, Weisen and Shi, Han and Yu, Jincheng and Liu, Zhengying and Zhang, Yu and Kwok, James T and Li, Zhenguo and Weller, Adrian and Liu, Weiyang},
journal={arXiv preprint arXiv:2309.12284},
year={2023}
}
```
```bibtex
@article{jiang2023mistral,
title={Mistral 7B},
author={Jiang, Albert Q and Sablayrolles, Alexandre and Mensch, Arthur and Bamford, Chris and Chaplot, Devendra Singh and Casas, Diego de las and Bressand, Florian and Lengyel, Gianna and Lample, Guillaume and Saulnier, Lucile and others},
journal={arXiv preprint arXiv:2310.06825},
year={2023}
}
```
|