File size: 10,965 Bytes
fe554cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
CodeLlama-13b-hf - GGUF
- Model creator: https://huggingface.co/codellama/
- Original model: https://huggingface.co/codellama/CodeLlama-13b-hf/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [CodeLlama-13b-hf.Q2_K.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.Q2_K.gguf) | Q2_K | 4.52GB |
| [CodeLlama-13b-hf.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.IQ3_XS.gguf) | IQ3_XS | 4.99GB |
| [CodeLlama-13b-hf.IQ3_S.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.IQ3_S.gguf) | IQ3_S | 5.27GB |
| [CodeLlama-13b-hf.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.Q3_K_S.gguf) | Q3_K_S | 5.27GB |
| [CodeLlama-13b-hf.IQ3_M.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.IQ3_M.gguf) | IQ3_M | 5.57GB |
| [CodeLlama-13b-hf.Q3_K.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.Q3_K.gguf) | Q3_K | 5.9GB |
| [CodeLlama-13b-hf.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.Q3_K_M.gguf) | Q3_K_M | 5.9GB |
| [CodeLlama-13b-hf.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.Q3_K_L.gguf) | Q3_K_L | 6.45GB |
| [CodeLlama-13b-hf.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.IQ4_XS.gguf) | IQ4_XS | 6.54GB |
| [CodeLlama-13b-hf.Q4_0.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.Q4_0.gguf) | Q4_0 | 6.86GB |
| [CodeLlama-13b-hf.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.IQ4_NL.gguf) | IQ4_NL | 6.9GB |
| [CodeLlama-13b-hf.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.Q4_K_S.gguf) | Q4_K_S | 6.91GB |
| [CodeLlama-13b-hf.Q4_K.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.Q4_K.gguf) | Q4_K | 7.33GB |
| [CodeLlama-13b-hf.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.Q4_K_M.gguf) | Q4_K_M | 7.33GB |
| [CodeLlama-13b-hf.Q4_1.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.Q4_1.gguf) | Q4_1 | 7.61GB |
| [CodeLlama-13b-hf.Q5_0.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.Q5_0.gguf) | Q5_0 | 8.36GB |
| [CodeLlama-13b-hf.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.Q5_K_S.gguf) | Q5_K_S | 8.36GB |
| [CodeLlama-13b-hf.Q5_K.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.Q5_K.gguf) | Q5_K | 8.6GB |
| [CodeLlama-13b-hf.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.Q5_K_M.gguf) | Q5_K_M | 8.6GB |
| [CodeLlama-13b-hf.Q5_1.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.Q5_1.gguf) | Q5_1 | 9.1GB |
| [CodeLlama-13b-hf.Q6_K.gguf](https://huggingface.co/RichardErkhov/codellama_-_CodeLlama-13b-hf-gguf/blob/main/CodeLlama-13b-hf.Q6_K.gguf) | Q6_K | 9.95GB |
Original model description:
---
language:
- code
pipeline_tag: text-generation
tags:
- llama-2
license: llama2
---
# **Code Llama**
Code Llama is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 34 billion parameters. This is the repository for the base 13B version in the Hugging Face Transformers format. This model is designed for general code synthesis and understanding. Links to other models can be found in the index at the bottom.
> [!NOTE]
> This is a non-official Code Llama repo. You can find the official Meta repository in the [Meta Llama organization](https://huggingface.co/meta-llama/CodeLlama-13b-hf).
| | Base Model | Python | Instruct |
| --- | ----------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------- |
| 7B | [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) | [codellama/CodeLlama-7b-Python-hf](https://huggingface.co/codellama/CodeLlama-7b-Python-hf) | [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf) |
| 13B | [codellama/CodeLlama-13b-hf](https://huggingface.co/codellama/CodeLlama-13b-hf) | [codellama/CodeLlama-13b-Python-hf](https://huggingface.co/codellama/CodeLlama-13b-Python-hf) | [codellama/CodeLlama-13b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf) |
| 34B | [codellama/CodeLlama-34b-hf](https://huggingface.co/codellama/CodeLlama-34b-hf) | [codellama/CodeLlama-34b-Python-hf](https://huggingface.co/codellama/CodeLlama-34b-Python-hf) | [codellama/CodeLlama-34b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-34b-Instruct-hf) |
| 70B | [codellama/CodeLlama-70b-hf](https://huggingface.co/codellama/CodeLlama-70b-hf) | [codellama/CodeLlama-70b-Python-hf](https://huggingface.co/codellama/CodeLlama-70b-Python-hf) | [codellama/CodeLlama-70b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-70b-Instruct-hf) |
## Model Use
To use this model, please make sure to install transformers:
```bash
pip install transformers accelerate
```
Model capabilities:
- [x] Code completion.
- [x] Infilling.
- [ ] Instructions / chat.
- [ ] Python specialist.
```python
from transformers import AutoTokenizer
import transformers
import torch
model = "codellama/CodeLlama-13b-hf"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
sequences = pipeline(
'import socket\n\ndef ping_exponential_backoff(host: str):',
do_sample=True,
top_k=10,
temperature=0.1,
top_p=0.95,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
max_length=200,
)
for seq in sequences:
print(f"Result: {seq['generated_text']}")
```
## Model Details
*Note: Use of this model is governed by the Meta license. Meta developed and publicly released the Code Llama family of large language models (LLMs).
**Model Developers** Meta
**Variations** Code Llama comes in three model sizes, and three variants:
* Code Llama: base models designed for general code synthesis and understanding
* Code Llama - Python: designed specifically for Python
* Code Llama - Instruct: for instruction following and safer deployment
All variants are available in sizes of 7B, 13B and 34B parameters.
**This repository contains the base version of the 13B parameters model.**
**Input** Models input text only.
**Output** Models generate text only.
**Model Architecture** Code Llama is an auto-regressive language model that uses an optimized transformer architecture.
**Model Dates** Code Llama and its variants have been trained between January 2023 and July 2023.
**Status** This is a static model trained on an offline dataset. Future versions of Code Llama - Instruct will be released as we improve model safety with community feedback.
**License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
**Research Paper** More information can be found in the paper "[Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/)" or its [arXiv page](https://arxiv.org/abs/2308.12950).
## Intended Use
**Intended Use Cases** Code Llama and its variants is intended for commercial and research use in English and relevant programming languages. The base model Code Llama can be adapted for a variety of code synthesis and understanding tasks, Code Llama - Python is designed specifically to handle the Python programming language, and Code Llama - Instruct is intended to be safer to use for code assistant and generation applications.
**Out-of-Scope Uses** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English. Use in any other way that is prohibited by the Acceptable Use Policy and Licensing Agreement for Code Llama and its variants.
## Hardware and Software
**Training Factors** We used custom training libraries. The training and fine-tuning of the released models have been performed Meta’s Research Super Cluster.
**Carbon Footprint** In aggregate, training all 9 Code Llama models required 400K GPU hours of computation on hardware of type A100-80GB (TDP of 350-400W). Estimated total emissions were 65.3 tCO2eq, 100% of which were offset by Meta’s sustainability program.
## Training Data
All experiments reported here and the released models have been trained and fine-tuned using the same data as Llama 2 with different weights (see Section 2 and Table 1 in the [research paper](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) for details).
## Evaluation Results
See evaluations for the main models and detailed ablations in Section 3 and safety evaluations in Section 4 of the research paper.
## Ethical Considerations and Limitations
Code Llama and its variants are a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Code Llama’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate or objectionable responses to user prompts. Therefore, before deploying any applications of Code Llama, developers should perform safety testing and tuning tailored to their specific applications of the model.
Please see the Responsible Use Guide available available at [https://ai.meta.com/llama/responsible-use-guide](https://ai.meta.com/llama/responsible-use-guide).
|