File size: 6,691 Bytes
fa6f9fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
tiny_starcoder_py - GGUF
- Model creator: https://huggingface.co/bigcode/
- Original model: https://huggingface.co/bigcode/tiny_starcoder_py/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [tiny_starcoder_py.Q2_K.gguf](https://huggingface.co/RichardErkhov/bigcode_-_tiny_starcoder_py-gguf/blob/main/tiny_starcoder_py.Q2_K.gguf) | Q2_K | 0.1GB |
| [tiny_starcoder_py.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/bigcode_-_tiny_starcoder_py-gguf/blob/main/tiny_starcoder_py.IQ3_XS.gguf) | IQ3_XS | 0.1GB |
| [tiny_starcoder_py.IQ3_S.gguf](https://huggingface.co/RichardErkhov/bigcode_-_tiny_starcoder_py-gguf/blob/main/tiny_starcoder_py.IQ3_S.gguf) | IQ3_S | 0.1GB |
| [tiny_starcoder_py.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/bigcode_-_tiny_starcoder_py-gguf/blob/main/tiny_starcoder_py.Q3_K_S.gguf) | Q3_K_S | 0.1GB |
| [tiny_starcoder_py.IQ3_M.gguf](https://huggingface.co/RichardErkhov/bigcode_-_tiny_starcoder_py-gguf/blob/main/tiny_starcoder_py.IQ3_M.gguf) | IQ3_M | 0.11GB |
| [tiny_starcoder_py.Q3_K.gguf](https://huggingface.co/RichardErkhov/bigcode_-_tiny_starcoder_py-gguf/blob/main/tiny_starcoder_py.Q3_K.gguf) | Q3_K | 0.11GB |
| [tiny_starcoder_py.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/bigcode_-_tiny_starcoder_py-gguf/blob/main/tiny_starcoder_py.Q3_K_M.gguf) | Q3_K_M | 0.11GB |
| [tiny_starcoder_py.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/bigcode_-_tiny_starcoder_py-gguf/blob/main/tiny_starcoder_py.Q3_K_L.gguf) | Q3_K_L | 0.12GB |
| [tiny_starcoder_py.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/bigcode_-_tiny_starcoder_py-gguf/blob/main/tiny_starcoder_py.IQ4_XS.gguf) | IQ4_XS | 0.11GB |
| [tiny_starcoder_py.Q4_0.gguf](https://huggingface.co/RichardErkhov/bigcode_-_tiny_starcoder_py-gguf/blob/main/tiny_starcoder_py.Q4_0.gguf) | Q4_0 | 0.12GB |
| [tiny_starcoder_py.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/bigcode_-_tiny_starcoder_py-gguf/blob/main/tiny_starcoder_py.IQ4_NL.gguf) | IQ4_NL | 0.12GB |
| [tiny_starcoder_py.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/bigcode_-_tiny_starcoder_py-gguf/blob/main/tiny_starcoder_py.Q4_K_S.gguf) | Q4_K_S | 0.12GB |
| [tiny_starcoder_py.Q4_K.gguf](https://huggingface.co/RichardErkhov/bigcode_-_tiny_starcoder_py-gguf/blob/main/tiny_starcoder_py.Q4_K.gguf) | Q4_K | 0.12GB |
| [tiny_starcoder_py.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/bigcode_-_tiny_starcoder_py-gguf/blob/main/tiny_starcoder_py.Q4_K_M.gguf) | Q4_K_M | 0.12GB |
| [tiny_starcoder_py.Q4_1.gguf](https://huggingface.co/RichardErkhov/bigcode_-_tiny_starcoder_py-gguf/blob/main/tiny_starcoder_py.Q4_1.gguf) | Q4_1 | 0.12GB |
| [tiny_starcoder_py.Q5_0.gguf](https://huggingface.co/RichardErkhov/bigcode_-_tiny_starcoder_py-gguf/blob/main/tiny_starcoder_py.Q5_0.gguf) | Q5_0 | 0.13GB |
| [tiny_starcoder_py.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/bigcode_-_tiny_starcoder_py-gguf/blob/main/tiny_starcoder_py.Q5_K_S.gguf) | Q5_K_S | 0.13GB |
| [tiny_starcoder_py.Q5_K.gguf](https://huggingface.co/RichardErkhov/bigcode_-_tiny_starcoder_py-gguf/blob/main/tiny_starcoder_py.Q5_K.gguf) | Q5_K | 0.14GB |
| [tiny_starcoder_py.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/bigcode_-_tiny_starcoder_py-gguf/blob/main/tiny_starcoder_py.Q5_K_M.gguf) | Q5_K_M | 0.14GB |
| [tiny_starcoder_py.Q5_1.gguf](https://huggingface.co/RichardErkhov/bigcode_-_tiny_starcoder_py-gguf/blob/main/tiny_starcoder_py.Q5_1.gguf) | Q5_1 | 0.14GB |
| [tiny_starcoder_py.Q6_K.gguf](https://huggingface.co/RichardErkhov/bigcode_-_tiny_starcoder_py-gguf/blob/main/tiny_starcoder_py.Q6_K.gguf) | Q6_K | 0.15GB |
| [tiny_starcoder_py.Q8_0.gguf](https://huggingface.co/RichardErkhov/bigcode_-_tiny_starcoder_py-gguf/blob/main/tiny_starcoder_py.Q8_0.gguf) | Q8_0 | 0.18GB |
Original model description:
---
pipeline_tag: text-generation
inference: true
widget:
- text: 'def print_hello_world():'
example_title: Hello world
group: Python
license: bigcode-openrail-m
datasets:
- bigcode/the-stack-dedup
metrics:
- code_eval
library_name: transformers
tags:
- code
model-index:
- name: Tiny-StarCoder-Py
results:
- task:
type: text-generation
dataset:
type: openai_humaneval
name: HumanEval
metrics:
- name: pass@1
type: pass@1
value: 7.84%
verified: false
---
# TinyStarCoderPy
This is a 164M parameters model with the same architecture as [StarCoder](https://huggingface.co/bigcode/starcoder) (8k context length, MQA & FIM). It was trained on the Python data from [StarCoderData](https://huggingface.co/datasets/bigcode/starcoderdata)
for ~6 epochs which amounts to 100B tokens.
## Use
### Intended use
The model was trained on GitHub code, to assist with some tasks like [Assisted Generation](https://huggingface.co/blog/assisted-generation). For pure code completion, we advise using our 15B models [StarCoder]() or [StarCoderBase]().
### Generation
```python
# pip install -q transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "bigcode/tiny_starcoder_py"
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to(device)
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```
### Fill-in-the-middle
Fill-in-the-middle uses special tokens to identify the prefix/middle/suffix part of the input and output:
```python
input_text = "<fim_prefix>def print_one_two_three():\n print('one')\n <fim_suffix>\n print('three')<fim_middle>"
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```
# Training
## Model
- **Architecture:** GPT-2 model with multi-query attention and Fill-in-the-Middle objective
- **Pretraining steps:** 50k
- **Pretraining tokens:** 100 billion
- **Precision:** bfloat16
## Hardware
- **GPUs:** 32 Tesla A100
- **Training time:** 18 hours
## Software
- **Orchestration:** [Megatron-LM](https://github.com/bigcode-project/Megatron-LM)
- **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch)
- **BP16 if applicable:** [apex](https://github.com/NVIDIA/apex)
# License
The model is licensed under the BigCode OpenRAIL-M v1 license agreement. You can find the full agreement [here](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement).
|