File size: 12,763 Bytes
3081eaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
Quantization made by Richard Erkhov.

[Github](https://github.com/RichardErkhov)

[Discord](https://discord.gg/pvy7H8DZMG)

[Request more models](https://github.com/RichardErkhov/quant_request)


germeo-7b-laser - GGUF
- Model creator: https://huggingface.co/aari1995/
- Original model: https://huggingface.co/aari1995/germeo-7b-laser/


| Name | Quant method | Size |
| ---- | ---- | ---- |
| [germeo-7b-laser.Q2_K.gguf](https://huggingface.co/RichardErkhov/aari1995_-_germeo-7b-laser-gguf/blob/main/germeo-7b-laser.Q2_K.gguf) | Q2_K | 2.53GB |
| [germeo-7b-laser.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/aari1995_-_germeo-7b-laser-gguf/blob/main/germeo-7b-laser.IQ3_XS.gguf) | IQ3_XS | 2.81GB |
| [germeo-7b-laser.IQ3_S.gguf](https://huggingface.co/RichardErkhov/aari1995_-_germeo-7b-laser-gguf/blob/main/germeo-7b-laser.IQ3_S.gguf) | IQ3_S | 2.96GB |
| [germeo-7b-laser.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/aari1995_-_germeo-7b-laser-gguf/blob/main/germeo-7b-laser.Q3_K_S.gguf) | Q3_K_S | 2.95GB |
| [germeo-7b-laser.IQ3_M.gguf](https://huggingface.co/RichardErkhov/aari1995_-_germeo-7b-laser-gguf/blob/main/germeo-7b-laser.IQ3_M.gguf) | IQ3_M | 3.06GB |
| [germeo-7b-laser.Q3_K.gguf](https://huggingface.co/RichardErkhov/aari1995_-_germeo-7b-laser-gguf/blob/main/germeo-7b-laser.Q3_K.gguf) | Q3_K | 3.28GB |
| [germeo-7b-laser.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/aari1995_-_germeo-7b-laser-gguf/blob/main/germeo-7b-laser.Q3_K_M.gguf) | Q3_K_M | 3.28GB |
| [germeo-7b-laser.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/aari1995_-_germeo-7b-laser-gguf/blob/main/germeo-7b-laser.Q3_K_L.gguf) | Q3_K_L | 3.56GB |
| [germeo-7b-laser.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/aari1995_-_germeo-7b-laser-gguf/blob/main/germeo-7b-laser.IQ4_XS.gguf) | IQ4_XS | 3.67GB |
| [germeo-7b-laser.Q4_0.gguf](https://huggingface.co/RichardErkhov/aari1995_-_germeo-7b-laser-gguf/blob/main/germeo-7b-laser.Q4_0.gguf) | Q4_0 | 3.83GB |
| [germeo-7b-laser.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/aari1995_-_germeo-7b-laser-gguf/blob/main/germeo-7b-laser.IQ4_NL.gguf) | IQ4_NL | 3.87GB |
| [germeo-7b-laser.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/aari1995_-_germeo-7b-laser-gguf/blob/main/germeo-7b-laser.Q4_K_S.gguf) | Q4_K_S | 3.86GB |
| [germeo-7b-laser.Q4_K.gguf](https://huggingface.co/RichardErkhov/aari1995_-_germeo-7b-laser-gguf/blob/main/germeo-7b-laser.Q4_K.gguf) | Q4_K | 4.07GB |
| [germeo-7b-laser.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/aari1995_-_germeo-7b-laser-gguf/blob/main/germeo-7b-laser.Q4_K_M.gguf) | Q4_K_M | 4.07GB |
| [germeo-7b-laser.Q4_1.gguf](https://huggingface.co/RichardErkhov/aari1995_-_germeo-7b-laser-gguf/blob/main/germeo-7b-laser.Q4_1.gguf) | Q4_1 | 4.24GB |
| [germeo-7b-laser.Q5_0.gguf](https://huggingface.co/RichardErkhov/aari1995_-_germeo-7b-laser-gguf/blob/main/germeo-7b-laser.Q5_0.gguf) | Q5_0 | 4.65GB |
| [germeo-7b-laser.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/aari1995_-_germeo-7b-laser-gguf/blob/main/germeo-7b-laser.Q5_K_S.gguf) | Q5_K_S | 4.65GB |
| [germeo-7b-laser.Q5_K.gguf](https://huggingface.co/RichardErkhov/aari1995_-_germeo-7b-laser-gguf/blob/main/germeo-7b-laser.Q5_K.gguf) | Q5_K | 4.78GB |
| [germeo-7b-laser.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/aari1995_-_germeo-7b-laser-gguf/blob/main/germeo-7b-laser.Q5_K_M.gguf) | Q5_K_M | 4.78GB |
| [germeo-7b-laser.Q5_1.gguf](https://huggingface.co/RichardErkhov/aari1995_-_germeo-7b-laser-gguf/blob/main/germeo-7b-laser.Q5_1.gguf) | Q5_1 | 5.07GB |
| [germeo-7b-laser.Q6_K.gguf](https://huggingface.co/RichardErkhov/aari1995_-_germeo-7b-laser-gguf/blob/main/germeo-7b-laser.Q6_K.gguf) | Q6_K | 5.53GB |
| [germeo-7b-laser.Q8_0.gguf](https://huggingface.co/RichardErkhov/aari1995_-_germeo-7b-laser-gguf/blob/main/germeo-7b-laser.Q8_0.gguf) | Q8_0 | 7.17GB |




Original model description:
---
language:
- de
license: apache-2.0
tags:
- hermeo
- laser
datasets:
- LeoLM/OpenSchnabeltier
pipeline_tag: conversational
model-index:
- name: germeo-7b-laser
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 60.75
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aari1995/germeo-7b-laser
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 82.81
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aari1995/germeo-7b-laser
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 60.57
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aari1995/germeo-7b-laser
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 53.83
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aari1995/germeo-7b-laser
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 75.61
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aari1995/germeo-7b-laser
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 43.37
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aari1995/germeo-7b-laser
      name: Open LLM Leaderboard
---

(Evaluation WIP)

## Hermes + Leo + German Laser = Germeo

## Germeo-7B-Laser
A German-English understanding, but German-only speaking model merged from Hermeo-7B.

### Model details

**Merged from**: leo-mistral-hessianai-7b-chat and DPOpenHermes-7B-v2

**Model type**: Causal decoder-only transformer language model

**Languages**: German replies with English Understanding Capabilities

**Laser-Data**: LeoLM/OpenSchnabeltier


This is an early experiment on laser and its influence on language understanding. It generally improves the language understanding capabilities.
The hypothesis is that it degrades the probability of English replies and increasing those of German replies. The models internal German capabilities are boosted. 

Will keep you updated..

### Acknowledgements:

I would like to thank everyone that participated in making this model and its training possible:
To [@malteos](https://huggingface.co/malteos) for hermeo
To [@cognitivecomputations](https://huggingface.co/cognitivecomputations) and Fernando Fernandes Neto for their implementation of LASER
To [@LeoLM](https://huggingface.co/LeoLM) and Björn for the OpenSchnabeltier dataset.


### Prompt format:

```python
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
# Convert prompt to tokens
prompt_template = """<|im_start|>system
Du bist ein hilfreicher Assistent.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""

prompt = "Schreibe eine Stellenanzeige für Data Scientist bei AXA!"

final_prompt = prompt_template.format(prompt=prompt)
```

#### Limit the model to output reply-only:
  To solve this, you need to implement a custom stopping criteria:

```python
from transformers import StoppingCriteria
class GermeoStoppingCriteria(StoppingCriteria):
  def __init__(self, target_sequence, prompt):
      self.target_sequence = target_sequence
      self.prompt=prompt

  def __call__(self, input_ids, scores, **kwargs):
      # Get the generated text as a string
      generated_text = tokenizer.decode(input_ids[0])
      generated_text = generated_text.replace(self.prompt,'')
      # Check if the target sequence appears in the generated text
      if self.target_sequence in generated_text:
          return True  # Stop generation

      return False  # Continue generation

  def __len__(self):
      return 1

  def __iter__(self):
      yield self
```
This then expects your input prompt (formatted as given into the model), and a stopping criteria, in this case the im_end token. Simply add it to the generation:

```python
generation_output = model.generate(
    tokens, 
    streamer=streamer,
    max_new_tokens=1012,
    stopping_criteria=GermeoStoppingCriteria("<|im_end|>", prompt_template.format(prompt=prompt))
)
```

### German benchmarks

| **German tasks:**             | **MMLU-DE**    | **Hellaswag-DE** | **ARC-DE**      |**Average**      |
|-------------------------------|-------------|---------------|--------------|--------------|
| **Models / Few-shots:**       | _(5 shots)_ | _(10 shots)_  | _(24 shots)_ | |
| _7B parameters_      |  | |  | |
| llama-2-7b                    | 0.400       | 0.513         | 0.381        | 0.431  |
| leo-hessianai-7b              | 0.400       | 0.609         | 0.429        | 0.479 |
| bloom-6b4-clp-german          | 0.274       | 0.550         | 0.351        | 0.392 |
| mistral-7b                    | **0.524**       | 0.588         | 0.473        | 0.528 |
| leo-mistral-hessianai-7b      | 0.481       | 0.663         | 0.485        | 0.543 |
| leo-mistral-hessianai-7b-chat | 0.458       | 0.617         | 0.465        | 0.513 |
| DPOpenHermes-7B-v2            | 0.517         | 0.603         | 0.515        | 0.545 |
| hermeo-7b                     | 0.511       | **0.668**         | **0.528**        | **0.569** |
| **germeo-7b-laser (this model)**| ?       | ?        | ?      | ? |
| _13B parameters_      |  | |  | |
| llama-2-13b                    | 0.469       | 0.581        | 0.468        | 0.506 |
| leo-hessianai-13b              | **0.486**       | **0.658**         | **0.509**       | **0.551** |
| _70B parameters_      |  | |  | |
| llama-2-70b                    | 0.597       | 0.674       | 0.561       | 0.611 |
| leo-hessianai-70b              | **0.653**       | **0.721**         | **0.600**       | **0.658** |


Even though the model does not generate English text without being explicitly asked, performance on English Benchmarks is still up:

### English benchmarks

| **English tasks:**                 | **MMLU**    | **Hellaswag** | **ARC**      | **Average** |
|------------------------------------|-------------|---------------|--------------|-------------|
| **Models / Few-shots:**            | _(5 shots)_ | _(10 shots)_  | _(24 shots)_ |             |
| llama-2-7b                         |       0.466 |         0.786 |        0.530 |       0.594 |
| leolm-hessianai-7b                 |       0.423 |         0.759 |        0.522 |       0.568 |
| bloom-6b4-clp-german               |       0.264 |         0.525 |        0.328 |       0.372 |
| mistral-7b                         |   **0.635** |     **0.832** |        0.607 |   **0.691** |
| leolm-mistral-hessianai-7b         |       0.550 |         0.777 |        0.518 |       0.615 |
| hermeo-7b                          |       0.601 |         0.821 |    **0.620** |       0.681 |
| germeo-7b-laser (this model)       |       0.601 |         0.828 |        0.608 |       0.679 |
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_aari1995__germeo-7b-laser)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |62.82|
|AI2 Reasoning Challenge (25-Shot)|60.75|
|HellaSwag (10-Shot)              |82.81|
|MMLU (5-Shot)                    |60.57|
|TruthfulQA (0-shot)              |53.83|
|Winogrande (5-shot)              |75.61|
|GSM8k (5-shot)                   |43.37|