File size: 26,486 Bytes
d03b672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
Quantization made by Richard Erkhov.

[Github](https://github.com/RichardErkhov)

[Discord](https://discord.gg/pvy7H8DZMG)

[Request more models](https://github.com/RichardErkhov/quant_request)


LongAlpaca-7B - GGUF
- Model creator: https://huggingface.co/Yukang/
- Original model: https://huggingface.co/Yukang/LongAlpaca-7B/


| Name | Quant method | Size |
| ---- | ---- | ---- |
| [LongAlpaca-7B.Q2_K.gguf](https://huggingface.co/RichardErkhov/Yukang_-_LongAlpaca-7B-gguf/blob/main/LongAlpaca-7B.Q2_K.gguf) | Q2_K | 2.36GB |
| [LongAlpaca-7B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Yukang_-_LongAlpaca-7B-gguf/blob/main/LongAlpaca-7B.IQ3_XS.gguf) | IQ3_XS | 2.6GB |
| [LongAlpaca-7B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Yukang_-_LongAlpaca-7B-gguf/blob/main/LongAlpaca-7B.IQ3_S.gguf) | IQ3_S | 2.75GB |
| [LongAlpaca-7B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Yukang_-_LongAlpaca-7B-gguf/blob/main/LongAlpaca-7B.Q3_K_S.gguf) | Q3_K_S | 2.75GB |
| [LongAlpaca-7B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Yukang_-_LongAlpaca-7B-gguf/blob/main/LongAlpaca-7B.IQ3_M.gguf) | IQ3_M | 2.9GB |
| [LongAlpaca-7B.Q3_K.gguf](https://huggingface.co/RichardErkhov/Yukang_-_LongAlpaca-7B-gguf/blob/main/LongAlpaca-7B.Q3_K.gguf) | Q3_K | 3.07GB |
| [LongAlpaca-7B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Yukang_-_LongAlpaca-7B-gguf/blob/main/LongAlpaca-7B.Q3_K_M.gguf) | Q3_K_M | 3.07GB |
| [LongAlpaca-7B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Yukang_-_LongAlpaca-7B-gguf/blob/main/LongAlpaca-7B.Q3_K_L.gguf) | Q3_K_L | 3.35GB |
| [LongAlpaca-7B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Yukang_-_LongAlpaca-7B-gguf/blob/main/LongAlpaca-7B.IQ4_XS.gguf) | IQ4_XS | 3.4GB |
| [LongAlpaca-7B.Q4_0.gguf](https://huggingface.co/RichardErkhov/Yukang_-_LongAlpaca-7B-gguf/blob/main/LongAlpaca-7B.Q4_0.gguf) | Q4_0 | 3.56GB |
| [LongAlpaca-7B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Yukang_-_LongAlpaca-7B-gguf/blob/main/LongAlpaca-7B.IQ4_NL.gguf) | IQ4_NL | 3.58GB |
| [LongAlpaca-7B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Yukang_-_LongAlpaca-7B-gguf/blob/main/LongAlpaca-7B.Q4_K_S.gguf) | Q4_K_S | 3.59GB |
| [LongAlpaca-7B.Q4_K.gguf](https://huggingface.co/RichardErkhov/Yukang_-_LongAlpaca-7B-gguf/blob/main/LongAlpaca-7B.Q4_K.gguf) | Q4_K | 3.8GB |
| [LongAlpaca-7B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Yukang_-_LongAlpaca-7B-gguf/blob/main/LongAlpaca-7B.Q4_K_M.gguf) | Q4_K_M | 3.8GB |
| [LongAlpaca-7B.Q4_1.gguf](https://huggingface.co/RichardErkhov/Yukang_-_LongAlpaca-7B-gguf/blob/main/LongAlpaca-7B.Q4_1.gguf) | Q4_1 | 3.95GB |
| [LongAlpaca-7B.Q5_0.gguf](https://huggingface.co/RichardErkhov/Yukang_-_LongAlpaca-7B-gguf/blob/main/LongAlpaca-7B.Q5_0.gguf) | Q5_0 | 4.33GB |
| [LongAlpaca-7B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Yukang_-_LongAlpaca-7B-gguf/blob/main/LongAlpaca-7B.Q5_K_S.gguf) | Q5_K_S | 4.33GB |
| [LongAlpaca-7B.Q5_K.gguf](https://huggingface.co/RichardErkhov/Yukang_-_LongAlpaca-7B-gguf/blob/main/LongAlpaca-7B.Q5_K.gguf) | Q5_K | 4.45GB |
| [LongAlpaca-7B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Yukang_-_LongAlpaca-7B-gguf/blob/main/LongAlpaca-7B.Q5_K_M.gguf) | Q5_K_M | 4.45GB |
| [LongAlpaca-7B.Q5_1.gguf](https://huggingface.co/RichardErkhov/Yukang_-_LongAlpaca-7B-gguf/blob/main/LongAlpaca-7B.Q5_1.gguf) | Q5_1 | 4.72GB |
| [LongAlpaca-7B.Q6_K.gguf](https://huggingface.co/RichardErkhov/Yukang_-_LongAlpaca-7B-gguf/blob/main/LongAlpaca-7B.Q6_K.gguf) | Q6_K | 5.15GB |
| [LongAlpaca-7B.Q8_0.gguf](https://huggingface.co/RichardErkhov/Yukang_-_LongAlpaca-7B-gguf/blob/main/LongAlpaca-7B.Q8_0.gguf) | Q8_0 | 6.67GB |




Original model description:
# LongLoRA and LongAlpaca for Long-context LLMs


[![Huggingface Models](https://img.shields.io/badge/Models-Huggingface%20Models-bron)](https://huggingface.co/Yukang)
[![Github](https://img.shields.io/badge/Github-Repo-cyan)](https://github.com/dvlab-research/LongLoRA)
[![Data](https://img.shields.io/badge/Data-LongAlpaca%2012k-light)](https://huggingface.co/datasets/Yukang/LongAlpaca-12k)
[![Paper](https://img.shields.io/badge/Paper-Arvix-blue)](https://arxiv.org/abs/2309.12307)

[![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-yellow.svg)](https://github.com/dvlab-research/LongLoRA/blob/main/LICENSE)
[![Data License](https://img.shields.io/badge/Data%20License-CC%20By%20NC%204.0-orange.svg)](https://github.com/dvlab-research/LongLoRA/blob/main/DATA_LICENSE)
[![Weight License](https://img.shields.io/badge/Weight%20License-CC%20By%20NC%204.0-red)](https://github.com/dvlab-research/LongLoRA/blob/main/WEIGHT_LICENSE)

For detailed usage and codes, please visit the [Github project](https://github.com/dvlab-research/LongLoRA).
## TABLE OF CONTENTS
1. [News](#news)
2. [Examples](#examples)
3. [Highlights](#highlights)
4. [How to contribute](#how-to-contribute)
5. [Requirements](#usage-requirements)
6. [Installation and quick guide](#installation-and-quick-guide)
7. [LongAlpaca Data](#longalpaca-data)
8. [Models](#models)
9. [Training](#training)
10. [Evaluation](#evaluation)
11. [Demo](#demo)
12. [Data Generation via Pdf2Text](#data-generation-via-pdf2text)
13. [Citation](#citation)
14. [Acknowledgement](#acknowledgement)
15. [License](#license)
      
## News
- [x] [2023.10.8] **We release the long instruction-following dataset**, [LongAlpaca-12k](https://huggingface.co/datasets/Yukang/LongAlpaca-12k) and **the corresponding models**, [LongAlpaca-7B](https://huggingface.co/Yukang/LongAlpaca-7B), [LongAlpaca-13B](https://huggingface.co/Yukang/LongAlpaca-13B), and [LongAlpaca-70B](https://huggingface.co/Yukang/LongAlpaca-70B).
- (*The previous sft models*, [Llama-2-13b-chat-longlora-32k-sft](https://huggingface.co/Yukang/Llama-2-13b-chat-longlora-32k-sft) and [Llama-2-70b-chat-longlora-32k-sft](https://huggingface.co/Yukang/Llama-2-70b-chat-longlora-32k-sft), *have been depreciated*.)
- [x] [2023.10.3] We add support GPTNeoX models. Please refer to this [PR](https://github.com/dvlab-research/LongLoRA/pull/32) for usage. Thanks for @naubull2 for this contribution.
- [x] [2023.9.22] We release all our fine-tuned [models](https://huggingface.co/Yukang), including **70B-32k models**, [LLaMA2-LongLoRA-70B-32k](https://huggingface.co/Yukang/Llama-2-70b-longlora-32k), [LLaMA2-LongLoRA-7B-100k](https://huggingface.co/Yukang/Llama-2-7b-longlora-100k-ft). Welcome to check them out!
- [x] [2023.9.22] We release [Paper](http://arxiv.org/abs/2309.12307) and this GitHub repo, including training and evaluation code.

**LongLoRA: Efficient Fine-tuning of Long-Context Large Language Models [[Paper](http://arxiv.org/abs/2309.12307)]** <br />
[Yukang Chen](https://scholar.google.com/citations?user=6p0ygKUAAAAJ&hl=en),
[Shengju Qian](https://scholar.google.com/citations?user=QNnWmasAAAAJ),
[Haotian Tang](https://scholar.google.com/citations?user=WxL13BAAAAAJ&hl),
[Xin Lai](https://scholar.google.com/citations?user=tqNDPA4AAAAJ&hl=zh-CN),
[Zhijian Liu](https://scholar.google.com/citations?user=3coYSTUAAAAJ&hl=en),
[Song Han](https://scholar.google.com/citations?user=E0iCaa4AAAAJ&hl=zh-CN),
[Jiaya Jia](https://scholar.google.com/citations?user=XPAkzTEAAAAJ&hl=en)<br />

## Highlights
1. In LongLoRA approach, The proposed shifted short attention is easy to implement, compatible with Flash-Attention, and is not required during inference.
2. We released all our models, including models from 7B to 70B, context length from 8k to 100k, including [LLaMA2-LongLoRA-7B-100k](https://huggingface.co/Yukang/Llama-2-7b-longlora-100k-ft), [LLaMA2-LongLoRA-13B-64k](https://huggingface.co/Yukang/Llama-2-13b-longlora-64k), and [LLaMA2-LongLoRA-70B-32k](https://huggingface.co/Yukang/Llama-2-70b-longlora-32k).
3. We built up a long-context instruction-following dataset, [LongAlpaca-12k](#longalpaca-data). We released the corresponding [LongAlpaca-7B](https://huggingface.co/Yukang/LongAlpaca-7B), [LongAlpaca-13B](https://huggingface.co/Yukang/LongAlpaca-13B) and [LongAlpaca-70B](https://huggingface.co/Yukang/LongAlpaca-70B) models. To our best knowledge, this is the first open-sourced long-context 70B model.

## How to Contribute
- Make sure to have git installed.
- Create your own [fork](https://github.com/dvlab-research/LongLoRA/fork) of the project.
- Clone the repository on your local machine, using git clone and pasting the url of this project.
- Read both the `Requirements` and `Installation and Quick Guide` sections below.
- Commit and push your changes.
- Make a pull request when finished modifying the project.


## Usage Requirements
To download and use the [pre-trained weights](#pre-trained-weights) you will need:
1. Hugging Face (HF) account with valid email. Note, the email used for HF must alse be used for the license agreement.
2. Accept the Meta [license and acceptable use policy](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) 


## Installation and Quick Guide
To install and run the application:
1. [Fork this repo](https://github.com/dvlab-research/LongLoRA/fork) on github
2. Clone the repository on your local machine, using git clone and pasting the url of this project.
3. Run the following code:
```
pip install -r requirements.txt
pip install flash-attn --no-build-isolation
```
4. Use either a [Released model](#released-models) or [Fine tune](#fine-tuning) a model to fit your preferences.
5. Test your model by chat.
6. Deploy your own demo.

## LongAlpaca Data

LongAlpaca-12k contains 9k long QA data that we collected and 3k short QA sampled from the original [Alpaca data](https://github.com/tatsu-lab/stanford_alpaca/blob/main/alpaca_data.json). This is to avoid the case that the model might degrade at short instruction following. The data we collect contains various types and amounts as the following figure.

| Data           | Short QA | Long QA  | Total    | Download |
|:---------------|----------|----------|----------|----------|
| LongAlpaca-12k | 3k       | 9k       | 12k      | [Link](https://huggingface.co/datasets/Yukang/LongAlpaca-12k) |

Following the original Alpaca format, our Long QA data uses the following prompts for fine-tuning:
- `instruction`: `str`, describes the task the model should perform. For example, to answer a question after reading a book section or paper. We vary the contents and questions to make instructions diverse.
- `output`: `str`, the answer to the instruction.

We did not use the `input` format in the Alpaca format for simplicity.

## Models

### Models with supervised fine-tuning
| Model          | Size | Context | Train   | Link                                                                                                                  |
|:---------------|------|---------|---------|-----------------------------------------------------------------------------------------------------------------------|
| LongAlpaca-7B  | 7B   | 32768   | Full FT | [Model](https://huggingface.co/Yukang/LongAlpaca-7B)                                                                  |
| LongAlpaca-13B | 13B  | 32768   | Full FT | [Model](https://huggingface.co/Yukang/LongAlpaca-13B)                                                                 |
| LongAlpaca-70B | 70B  | 32768   | LoRA+ | [Model](https://huggingface.co/Yukang/LongAlpaca-70B) [(LoRA-weight)](https://huggingface.co/Yukang/LongAlpaca-70B-lora) |


### Models with context extension via fully fine-tuning
| Model                       | Size | Context | Train | Link                                                              |
|:----------------------------|------|---------|-------|-------------------------------------------------------------------|
| Llama-2-7b-longlora-8k-ft   | 7B   | 8192    | Full FT    | [Model](https://huggingface.co/Yukang/Llama-2-7b-longlora-8k-ft)  |
| Llama-2-7b-longlora-16k-ft  | 7B   | 16384   | Full FT    | [Model](https://huggingface.co/Yukang/Llama-2-7b-longlora-16k-ft)  |
| Llama-2-7b-longlora-32k-ft  | 7B   | 32768   | Full FT    | [Model](https://huggingface.co/Yukang/Llama-2-7b-longlora-32k-ft)  |
| Llama-2-7b-longlora-100k-ft | 7B   | 100000  | Full FT    | [Model](https://huggingface.co/Yukang/Llama-2-7b-longlora-100k-ft) |
| Llama-2-13b-longlora-8k-ft  | 13B  | 8192    | Full FT    | [Model](https://huggingface.co/Yukang/Llama-2-13b-longlora-8k-ft)  |
| Llama-2-13b-longlora-16k-ft | 13B  | 16384   | Full FT    | [Model](https://huggingface.co/Yukang/Llama-2-13b-longlora-16k-ft) |
| Llama-2-13b-longlora-32k-ft | 13B  | 32768   | Full FT    | [Model](https://huggingface.co/Yukang/Llama-2-13b-longlora-32k-ft) |

### Models with context extension via improved LoRA fine-tuning
| Model                       | Size | Context | Train | Link                                                                |
|:----------------------------|------|---------|-------|---------------------------------------------------------------------|
| Llama-2-7b-longlora-8k      | 7B   | 8192    | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-7b-longlora-8k) |
| Llama-2-7b-longlora-16k     | 7B   | 16384   | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-7b-longlora-16k)       |
| Llama-2-7b-longlora-32k     | 7B   | 32768   | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-7b-longlora-32k)       |
| Llama-2-13b-longlora-8k     | 13B  | 8192    | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-13b-longlora-8k)       |
| Llama-2-13b-longlora-16k    | 13B  | 16384   | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-13b-longlora-16k)      |
| Llama-2-13b-longlora-32k    | 13B  | 32768   | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-13b-longlora-32k)      |
| Llama-2-13b-longlora-64k    | 13B  | 65536   | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-13b-longlora-64k)      |
| Llama-2-70b-longlora-32k    | 70B  | 32768   | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-70b-longlora-32k)      |
| Llama-2-70b-chat-longlora-32k    | 70B  | 32768   | LoRA+ | [LoRA-weight](https://huggingface.co/Yukang/Llama-2-70b-chat-longlora-32k) |

## Training
### Pre-trained weights
We use LLaMA2 models as the pre-trained weights and fine-tune them to long context window sizes. Download based on your choices.

| Pre-trained weights                                                           |
|:-------------------------------------------------------------------------------------|
| [Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf)      |
|[Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf)     |
| [Llama-2-70b-hf](https://huggingface.co/meta-llama/Llama-2-70b-hf)     |
| [Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) |
| [Llama-2-13b-chat-hf](https://huggingface.co/meta-llama/Llama-2-13b-chat-hf)         |
| [Llama-2-70b-chat-hf](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf)         |

This project also supports GPTNeoX models as the base model architecture. Some candidate pre-trained weights may include [GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b), [Polyglot-ko-12.8B](https://huggingface.co/EleutherAI/polyglot-ko-12.8b) and other variants.

### Fine-tuning
```
torchrun --nproc_per_node=8 fine-tune.py  \
        --model_name_or_path path_to/Llama-2-7b-hf \
        --bf16 True \
        --output_dir path_to_saving_checkpoints       \
        --cache_dir path_to_cache \
        --model_max_length 8192 \
        --use_flash_attn True \
        --low_rank_training False \
        --num_train_epochs 1  \
        --per_device_train_batch_size 1     \
        --per_device_eval_batch_size 2     \
        --gradient_accumulation_steps 8     \
        --evaluation_strategy "no"     \
        --save_strategy "steps"     \
        --save_steps 1000     \
        --save_total_limit 2     \
        --learning_rate 2e-5     \
        --weight_decay 0.0     \
        --warmup_steps 20     \
        --lr_scheduler_type "constant_with_warmup"     \
        --logging_steps 1     \
        --deepspeed "ds_configs/stage2.json" \
        --tf32 True \
        --max_steps 1000
```

- Please remember to change `path_to/Llama-2-7b-hf`, `path_to_saving_checkpoints`, `path_to_cache` to your own directory.
- Note that you can change `model_max_length` to other values.
- You could change `ds_configs/stage2.json` to `ds_configs/stage3.json` if you want.
- Please set `use_flash_attn` as `False` if you use V100 machines or do not install flash attention.
- You can set `low_rank_training` as `False` if you want to use fully fine-tuning. It will cost more GPU memory and slower, but the performance will be a bit better.
- When training is finished, to get the full model weight:
```
cd path_to_saving_checkpoints && python zero_to_fp32.py . pytorch_model.bin
```

### Supervised Fine-tuning
```
torchrun --nproc_per_node=8 supervised-fine-tune.py  \
        --model_name_or_path path_to_Llama2_chat_models \
        --bf16 True \
        --output_dir path_to_saving_checkpoints       \
        --model_max_length 32768 \
        --use_flash_attn True \
        --data_path LongAlpaca-12k.json \
        --low_rank_training True \
        --num_train_epochs 3  \
        --per_device_train_batch_size 1     \
        --per_device_eval_batch_size 2     \
        --gradient_accumulation_steps 1     \
        --evaluation_strategy "no"     \
        --save_strategy "steps"     \
        --save_steps 1000     \
        --save_total_limit 2     \
        --learning_rate 2e-5     \
        --weight_decay 0.0     \
        --warmup_steps 20     \
        --lr_scheduler_type "constant_with_warmup"     \
        --logging_steps 1     \
        --deepspeed "ds_configs/stage2.json" \
        --tf32 True
```
- There is no need to make supervised fine-tuning upon the fine-tuned context extended models. It is all right to directly use base model as Llama2-chat models, as the amount of long instruction following data is enough for SFT.
- Our long instruction following data can be found in [LongAlpaca-12k.json](https://huggingface.co/datasets/Yukang/LongAlpaca-12k).


### Get trainable weights in low-rank training
In low-rank training, we set embedding and normalization layers as trainable. Please use the following line to extract the trainable weights `trainable_params.bin` from `pytorch_model.bin`
```
python3 get_trainable_weights.py --checkpoint_path path_to_saving_checkpoints --trainable_params "embed,norm"
```

### Merge LoRA Weight
Merge the LoRA weights of `pytorch_model.bin` and trainable parameters `trainable_params.bin`, save the resulting model into your desired path in the Hugging Face format:
```
python3 merge_lora_weights_and_save_hf_model.py \
        --base_model path_to/Llama-2-7b-hf \
        --peft_model path_to_saving_checkpoints \
        --context_size 8192 \
        --save_path path_to_saving_merged_model
```
For example,
```
python3 merge_lora_weights_and_save_hf_model.py \
        --base_model /dataset/pretrained-models/Llama-2-7b-hf \
        --peft_model /dataset/yukangchen/hf_models/lora-models/Llama-2-7b-longlora-8k \
        --context_size 8192 \
        --save_path /dataset/yukangchen/models/Llama-2-7b-longlora-8k-merged
```


## Evaluation
### Perplexity Validation
To evaluate a model that is trained in the low-rank setting, please set both `base_model` and `peft_model`. `base_model` is the pre-trained weight. `peft_model` is the path to the saved checkpoint, which should contain `trainable_params.bin`, `adapter_model.bin` and `adapter_config.json`. For example,
```
python3 eval.py --seq_len 8192 --context_size 8192 --batch_size 1 --base_model path_to/Llama-2-7b-hf --peft_model path_to_saving_checkpoints --data_path pg19/test.bin
```

To evaluate a model that is fully fine-tuned, you only need to set `base_model` as the path to the saved checkpoint, which should contain `pytorch_model.bin` and `config.json`. `peft_model` should be ignored.
```
python3 eval.py --seq_len 8192 --context_size 8192 --batch_size 1 --base_model path_to_saving_checkpoints --data_path pg19/test.bin
```

- Note that `--seq_len` is to set the sequence length for evaluation. `--context_size` is to set the context length of the model during fine-tuning. `--seq_len` should not be larger than `--context_size`.

- We have already tokenized the validation and test splits of PG19 and proof-pile dataset into `pg19/validation.bin`, `pg19/test.bin`, and `proof-pile/test_sampled_data.bin`, with the tokenizer of LLaMA. `proof-pile/test_sampled_data.bin` contains 128 documents that are randomly sampled from the total proof-pile test split. For each document, it has at least 32768 tokens. We also release the sampled ids in [proof-pile/test_sampled_ids.bin](https://drive.google.com/file/d/1cnzWODLRQYAd7HeugzLCIhaqzaLZv7J5/view?usp=share_link). You can download them from the links below.

| Dataset    | Split      | Link                                                                                                         |
|:-----------|------------|--------------------------------------------------------------------------------------------------------------|
| PG19       | validation | [pg19/validation.bin](https://drive.google.com/file/d/1rbJvb0qRIf2mQoN2ON7S93TbTzMnlrN6/view?usp=share_link) |
| PG19       | test       | [pg19/test.bin](https://drive.google.com/file/d/1QANDMdctpacPAYgS04adDXqByGEq-Ret/view?usp=share_link)       |
| Proof-pile | test       | [proof-pile/test_sampled_data.bin](https://drive.google.com/file/d/1bUI5lPDvrqzY_XXJJ2sSuvZx0Y9AZClE/view?usp=share_link)         |
 

### Passkey Retrieval
We provide a manner to test the passkey retrieval accuracy. For example,
```
python3 passkey_retrivial.py \
        --context_size 32768 \
        --base_model path_to/Llama-2-7b-longlora-32k \
        --max_tokens 32768 \
        --interval 1000
```
- Note that the `context_size` is the context length during fine-tuning.
- `max_tokens` is maximum length for the document in passkey retrieval evaluation.
- `interval` is the interval during the document length increasing. It is a rough number because the document increases by sentences.

## Demo
### Local Inference
To chat with [Llama-2-13b-chat-longlora-32k-sft](https://huggingface.co/Yukang/Llama-2-13b-chat-longlora-32k-sft) or [Llama-2-70b-chat-longlora-32k-sft](https://huggingface.co/Yukang/Llama-2-70b-chat-longlora-32k-sft), you need to run `merge_lora_weights_and_save_hf_model.py` first, and then:
```
python3 inference.py  \
        --base_model path_to_model \
        --question $question \
        --context_size $context_length \
        --max_gen_len $max_gen_len \
        --flash_attn True \
        --material $material_content \
        --material_type $material_type \
        --material_title $material_title
```
To ask a question related to a book:
```
python3 inference.py  \
        --base_model /data/models/Llama-2-13b-chat-longlora-32k-sft \
        --question "Why doesn't Professor Snape seem to like Harry?" \
        --context_size 32768 \
        --max_gen_len 512 \
        --flash_attn True \
        --material "materials/Harry Potter and the Philosophers Stone_section2.txt" \
        --material_type "book" \
        --material_title "Harry Potter and the Philosophers Stone"
```
Note that you can ignore `material_type` or `material_title`.

To ask a question related to a paper:
```
python3 inference.py  \
        --base_model /data/models/Llama-2-13b-chat-longlora-32k-sft \
        --question "What are the main contributions and novelties of this work?" \
        --context_size 32768 \
        --max_gen_len 512 \
        --flash_attn True \
        --material "materials/paper1.txt" \
        --material_type "paper"
```

### Online Demo
To deploy your own demo run 
```
python3 demo.py  \
	--base_model path_to_model \
	--context_size $context_size \
	--max_gen_len $max_gen_len \
	--flash_attn True
```
Example 
```
python3 demo.py  \
	--base_model /data/models/Llama-2-13b-chat-longlora-32k-sft \
	--context_size 32768 \
	--max_gen_len 512 \
	--flash_attn True
```
- Note that `flash_attn=True` will make the generation slow but save much GPU memory.

## Data Generation via Pdf2text
During our dataset collection, we convert paper and books from pdf to text. The conversion quality has a large influence on the final model quality. We think that this step is non-trivial. We release the tool for the pdf2txt conversion, in the folder `pdf2txt`. It is built upon `pdf2image`, `easyocr`, `ditod` and `detectron2`. Please refer to the [README.md](pdf2txt/README.md) in `pdf2txt` for more details.

## Citation
If you find this project useful in your research, please consider citing:

```
@article{longlora,
  title={LongLoRA: Efficient Fine-tuning of Long-Context Large Language Models},
  author={Yukang Chen and Shengju Qian and Haotian Tang and Xin Lai and Zhijian Liu and Song Han and Jiaya Jia},
  journal={arXiv:2309.12307},
  year={2023}
}
```


```
@misc{long-alpaca,
  author = {Yukang Chen and Shaozuo Yu and Shengju Qian and Haotian Tang and Xin Lai and Zhijian Liu and Song Han and Jiaya Jia},
  title = {Long Alpaca: Long-context Instruction-following models},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/dvlab-research/LongLoRA}},
}
```
## Acknowledgement
-  This work is built upon the [LLaMA2](https://ai.meta.com/llama) as the pre-trained models.
-  This work can also be built upon the [GPTNeoX-HF](https://huggingface.co/docs/transformers/model_doc/gpt_neox) which is based upon [EleutherAI/GPTNeoX](https://github.com/EleutherAI/gpt-neox) as the pre-trained model architecture.
- This work is based on [DeepSpeed](https://github.com/microsoft/DeepSpeed), [peft](https://github.com/huggingface/peft), and [Flash-Attention2](https://github.com/Dao-AILab/flash-attention) for acceleration.
- Some evaluation code is modified upon [Landmark Attention](https://github.com/epfml/landmark-attention).
- We use [LongChat](https://github.com/DachengLi1/LongChat) for the retrieval evaluation.

## License
- LongLoRA is licensed under the Apache License 2.0. This means that it requires the preservation of copyright and license notices. 
- Data and weights are under CC-BY-NC 4.0 License. They are licensed for research use only, and allowed only non-commercial. Models trained using the dataset should not be used outside of research purposes.