RichardErkhov
commited on
uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
firefly-qwen1.5-en-7b - bnb 4bits
|
11 |
+
- Model creator: https://huggingface.co/YeungNLP/
|
12 |
+
- Original model: https://huggingface.co/YeungNLP/firefly-qwen1.5-en-7b/
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
Original model description:
|
18 |
+
---
|
19 |
+
library_name: transformers
|
20 |
+
license: apache-2.0
|
21 |
+
basemodel: Qwen/Qwen1.5-7B
|
22 |
+
---
|
23 |
+
|
24 |
+
## Model Card for Firefly-Qwen1.5
|
25 |
+
|
26 |
+
[firefly-qwen1.5-en-7b](https://huggingface.co/YeungNLP/firefly-qwen1.5-en-7b) and [firefly-qwen1.5-en-7b-dpo-v0.1](https://huggingface.co/YeungNLP/firefly-qwen1.5-en-7b-dpo-v0.1) are trained based on [Qwen1.5-7B](https://huggingface.co/Qwen/Qwen1.5-7B) to act as a helpful and harmless AI assistant.
|
27 |
+
We use [Firefly](https://github.com/yangjianxin1/Firefly) to train our models on **a single V100 GPU** with QLoRA.
|
28 |
+
firefly-qwen1.5-en-7b is fine-tuned based on Qwen1.5-7B with English instruction data, and firefly-qwen1.5-en-7b-dpo-v0.1 is trained with [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290) based on firefly-qwen1.5-en-7b.
|
29 |
+
|
30 |
+
Our models outperform official [Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat), [Gemma-7B-it](https://huggingface.co/google/gemma-7b-it), [Zephyr-7B-Beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) on [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
|
31 |
+
|
32 |
+
<img src="pics/open_llm.png" width="800">
|
33 |
+
|
34 |
+
Although our models are trained with English data, you can also try to chat with models in Chinese because Qwen1.5 is also good at Chinese. But we have not evaluated
|
35 |
+
the performance in Chinese yet.
|
36 |
+
|
37 |
+
We advise you to install transformers>=4.37.0.
|
38 |
+
|
39 |
+
## Performance
|
40 |
+
We evaluate our models on [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard), they achieve good performance.
|
41 |
+
|
42 |
+
| Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K |
|
43 |
+
|-----------------------------------|--------|--------|-----------|--------|------------|------------|--------|
|
44 |
+
| firefly-gemma-7b | 62.93 | 62.12 | 79.77 | 61.57 | 49.41 | 75.45 | 49.28 |
|
45 |
+
| **firefly-qwen1.5-en-7b-dpo-v0.1** | 62.36 | 54.35 | 76.04 | 61.21 | 56.4 | 72.06 | 54.13 |
|
46 |
+
| zephyr-7b-beta | 61.95 | 62.03 | 84.36 | 61.07 | 57.45 | 77.74 | 29.04 |
|
47 |
+
| **firefly-qwen1.5-en-7b** | 61.44 | 53.41 | 75.51 | 61.67 |51.96 |70.72 | 55.34 |
|
48 |
+
| vicuna-13b-v1.5 | 55.41 | 57.08 | 81.24 | 56.67 | 51.51 | 74.66 | 11.3 |
|
49 |
+
| Xwin-LM-13B-V0.1 | 55.29 | 62.54 | 82.8 | 56.53 | 45.96 | 74.27 | 9.63 |
|
50 |
+
| Qwen1.5-7B-Chat | 55.15 | 55.89 | 78.56 | 61.65 | 53.54 | 67.72 | 13.57 |
|
51 |
+
| gemma-7b-it | 53.56 | 51.45 | 71.96 | 53.52 | 47.29 | 67.96 | 29.19 |
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
+
## Usage
|
56 |
+
The chat templates of our chat models are the same as Official Qwen1.5-7B-Chat:
|
57 |
+
```text
|
58 |
+
<|im_start|>system
|
59 |
+
You are a helpful assistant.<|im_end|>
|
60 |
+
<|im_start|>user
|
61 |
+
hello, who are you?<|im_end|>
|
62 |
+
<|im_start|>assistant
|
63 |
+
I am a AI program developed by Firefly<|im_end|>
|
64 |
+
```
|
65 |
+
|
66 |
+
You can use script to inference in [Firefly](https://github.com/yangjianxin1/Firefly/blob/master/script/chat/chat.py).
|
67 |
+
|
68 |
+
You can also use the following code:
|
69 |
+
```python
|
70 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
71 |
+
import torch
|
72 |
+
|
73 |
+
model_name_or_path = "YeungNLP/firefly-qwen1.5-en-7b"
|
74 |
+
model = AutoModelForCausalLM.from_pretrained(
|
75 |
+
model_name_or_path,
|
76 |
+
trust_remote_code=True,
|
77 |
+
low_cpu_mem_usage=True,
|
78 |
+
torch_dtype=torch.float16,
|
79 |
+
device_map='auto',
|
80 |
+
)
|
81 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
82 |
+
|
83 |
+
prompt = "Compose an engaging travel blog post about a recent trip to Hawaii, highlighting cultural experiences and must-see attractions. "
|
84 |
+
messages = [
|
85 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
86 |
+
{"role": "user", "content": prompt}
|
87 |
+
]
|
88 |
+
text = tokenizer.apply_chat_template(
|
89 |
+
messages,
|
90 |
+
tokenize=False,
|
91 |
+
add_generation_prompt=True
|
92 |
+
)
|
93 |
+
model_inputs = tokenizer([text], return_tensors="pt").to('cuda')
|
94 |
+
|
95 |
+
generated_ids = model.generate(
|
96 |
+
model_inputs.input_ids,
|
97 |
+
max_new_tokens=1500,
|
98 |
+
top_p = 0.9,
|
99 |
+
temperature = 0.35,
|
100 |
+
repetition_penalty = 1.0,
|
101 |
+
eos_token_id=tokenizer.encode('<|im_end|>', add_special_tokens=False)
|
102 |
+
)
|
103 |
+
generated_ids = [
|
104 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
105 |
+
]
|
106 |
+
|
107 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
108 |
+
print(response)
|
109 |
+
```
|
110 |
+
|
111 |
+
## Training Details
|
112 |
+
Both in SFT and DPO stages, **We only use a single V100 GPU** with QLoRA, and we use [Firefly](https://github.com/yangjianxin1/Firefly) to train our models.
|
113 |
+
|
114 |
+
### Training Setting
|
115 |
+
The following hyperparameters are used during SFT:
|
116 |
+
- num_epochs: 1
|
117 |
+
- learning_rate: 2e-4
|
118 |
+
- total_train_batch_size: 32
|
119 |
+
- max_seq_length: 2048
|
120 |
+
- optimizer: paged_adamw_32bit
|
121 |
+
- lr_scheduler_type: constant_with_warmup
|
122 |
+
- warmup_steps: 700
|
123 |
+
- lora_rank: 64
|
124 |
+
- lora_alpha: 16
|
125 |
+
- lora_dropout: 0.05
|
126 |
+
- gradient_checkpointing: true
|
127 |
+
- fp16: true
|
128 |
+
|
129 |
+
The following hyperparameters were used during DPO:
|
130 |
+
- num_epochs: 1
|
131 |
+
- learning_rate: 2e-4
|
132 |
+
- total_train_batch_size: 32
|
133 |
+
- max_seq_length: 1600
|
134 |
+
- max_prompt_length: 500
|
135 |
+
- optimizer: paged_adamw_32bit
|
136 |
+
- lr_scheduler_type: constant_with_warmup
|
137 |
+
- warmup_steps: 200
|
138 |
+
- lora_rank: 64
|
139 |
+
- lora_alpha: 16
|
140 |
+
- lora_dropout: 0.05
|
141 |
+
- gradient_checkpointing: true
|
142 |
+
- fp16: true
|
143 |
+
|
144 |
+
|
145 |
+
### Training metrics
|
146 |
+
Training Rewards/margins in DPO:
|
147 |
+
|
148 |
+
<img src="pics/margins.png" width="600">
|
149 |
+
|
150 |
+
Training Rewards/accuracies in DPO:
|
151 |
+
|
152 |
+
<img src="pics/accuracies.png" width="500">
|
153 |
+
|
154 |
+
Training loss in DPO:
|
155 |
+
|
156 |
+
<img src="pics/loss.png" width="500">
|
157 |
+
|
158 |
+
The table below shows the full set of DPO training metrics:
|
159 |
+
|
160 |
+
| Epoch | Step | Loss | Rewards/accuracies | Rewards/margins | Rewards/chosen | Rewards/rejected | Logits/chosen| Logits/rejected | Logps/chosen| Logps/rejected|
|
161 |
+
|---|---|---|---|---|---|---|---|---|---|---|
|
162 |
+
|0.05|100|0.6231|0.6587|0.3179|0.0404|-0.2774|1.1694|1.2377|-284.5586|-255.4863|
|
163 |
+
|0.1|200|0.5945|0.6894|0.5988|-0.1704|-0.7693|1.012|1.0283|-284.3049|-268.1887|
|
164 |
+
|0.16|300|0.5754|0.6981|0.8314|-0.282|-1.1133|0.8912|0.8956|-283.6926|-270.3117|
|
165 |
+
|0.21|400|0.5702|0.7194|0.9369|-0.1944|-1.1313|0.7255|0.7557|-291.2833|-273.9706|
|
166 |
+
|0.26|500|0.5913|0.695|0.8784|-0.4524|-1.3309|0.5491|0.5535|-289.5705|-271.754|
|
167 |
+
|0.31|600|0.5743|0.6994|1.0192|-0.4505|-1.4698|0.6446|0.6399|-296.5292|-277.824|
|
168 |
+
|0.37|700|0.5876|0.7219|1.0471|-0.6998|-1.747|0.4955|0.4329|-303.7684|-289.0117|
|
169 |
+
|0.42|800|0.5831|0.715|1.0485|-0.8185|-1.8671|0.5589|0.4804|-295.6313|-288.0656|
|
170 |
+
|0.47|900|0.5674|0.7119|1.1854|-1.2085|-2.3939|0.3467|0.2249|-302.3643|-286.2816|
|
171 |
+
|0.52|1000|0.5794|0.7138|1.1458|-0.8423|-1.9881|0.5116|0.4248|-299.3136|-287.3934|
|
172 |
+
|0.58|1100|0.5718|0.7194|1.2897|-1.4944|-2.7841|0.6392|0.5739|-316.6829|-294.1148|
|
173 |
+
|0.63|1200|0.5718|0.7275|1.2459|-1.7543|-3.0002|0.4999|0.4065|-316.7873|-297.8514|
|
174 |
+
|0.68|1300|0.5789|0.72|1.3379|-1.8485|-3.1864|0.4289|0.3172|-314.8326|-296.8319|
|
175 |
+
|0.73|1400|0.5462|0.7425|1.4074|-1.9865|-3.3939|0.3645|0.2333|-309.4503|-294.3931|
|
176 |
+
|0.79|1500|0.5829|0.7156|1.2582|-2.1183|-3.3766|0.4193|0.2796|-307.5281|-292.0817|
|
177 |
+
|0.84|1600|0.5575|0.7375|1.471|-2.1429|-3.6139|0.6547|0.5152|-310.9912|-298.899|
|
178 |
+
|0.89|1700|0.5638|0.745|1.5433|-2.991|-4.5343|0.7336|0.6782|-328.2657|-307.5182|
|
179 |
+
|0.94|1800|0.5559|0.7181|1.4484|-2.8818|-4.3302|0.7997|0.8327|-316.2716|-295.1836|
|
180 |
+
|0.99|1900|0.5627|0.7387|1.5378|-2.7941|-4.332|0.8573|0.858|-324.9405|-310.1192|
|
181 |
+
|