RichardErkhov commited on
Commit
471011d
1 Parent(s): 4b7b413

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +165 -0
README.md ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ zephyr-7b-alpha - bnb 8bits
11
+ - Model creator: https://huggingface.co/HuggingFaceH4/
12
+ - Original model: https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/
13
+
14
+
15
+
16
+
17
+ Original model description:
18
+ ---
19
+ tags:
20
+ - generated_from_trainer
21
+ model-index:
22
+ - name: zephyr-7b-alpha
23
+ results: []
24
+ license: mit
25
+ datasets:
26
+ - stingning/ultrachat
27
+ - openbmb/UltraFeedback
28
+ language:
29
+ - en
30
+ base_model: mistralai/Mistral-7B-v0.1
31
+ ---
32
+
33
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
34
+ should probably proofread and complete it, then remove this comment. -->
35
+
36
+ <img src="https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/resolve/main/thumbnail.png" alt="Zephyr Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
37
+
38
+
39
+ # Model Card for Zephyr 7B Alpha
40
+
41
+ Zephyr is a series of language models that are trained to act as helpful assistants. Zephyr-7B-α is the first model in the series, and is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) that was trained on on a mix of publicly available, synthetic datasets using [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290). We found that removing the in-built alignment of these datasets boosted performance on [MT Bench](https://huggingface.co/spaces/lmsys/mt-bench) and made the model more helpful. However, this means that model is likely to generate problematic text when prompted to do so.
42
+
43
+
44
+ ## Model description
45
+
46
+ - **Model type:** A 7B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets.
47
+ - **Language(s) (NLP):** Primarily English
48
+ - **License:** MIT
49
+ - **Finetuned from model:** [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
50
+
51
+ ### Model Sources
52
+
53
+ <!-- Provide the basic links for the model. -->
54
+
55
+ - **Repository:** https://github.com/huggingface/alignment-handbook
56
+ - **Demo:** https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat
57
+
58
+ ## Intended uses & limitations
59
+
60
+ The model was initially fine-tuned on a variant of the [`UltraChat`](https://huggingface.co/datasets/stingning/ultrachat) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT. We then further aligned the model with [🤗 TRL's](https://github.com/huggingface/trl) `DPOTrainer` on the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, which contain 64k prompts and model completions that are ranked by GPT-4. As a result, the model can be used for chat and you can check out our [demo](https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat) to test its capabilities.
61
+
62
+ Here's how you can run the model using the `pipeline()` function from 🤗 Transformers:
63
+
64
+ ```python
65
+ # Install transformers from source - only needed for versions <= v4.34
66
+ # pip install git+https://github.com/huggingface/transformers.git
67
+ # pip install accelerate
68
+
69
+ import torch
70
+ from transformers import pipeline
71
+
72
+ pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-alpha", torch_dtype=torch.bfloat16, device_map="auto")
73
+
74
+ # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
75
+ messages = [
76
+ {
77
+ "role": "system",
78
+ "content": "You are a friendly chatbot who always responds in the style of a pirate",
79
+ },
80
+ {"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
81
+ ]
82
+ prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
83
+ outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
84
+ print(outputs[0]["generated_text"])
85
+ # <|system|>
86
+ # You are a friendly chatbot who always responds in the style of a pirate.</s>
87
+ # <|user|>
88
+ # How many helicopters can a human eat in one sitting?</s>
89
+ # <|assistant|>
90
+ # Ah, me hearty matey! But yer question be a puzzler! A human cannot eat a helicopter in one sitting, as helicopters are not edible. They be made of metal, plastic, and other materials, not food!
91
+ ```
92
+
93
+ ## Bias, Risks, and Limitations
94
+
95
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
96
+
97
+ Zephyr-7B-α has not been aligned to human preferences with techniques like RLHF or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so).
98
+ It is also unknown what the size and composition of the corpus was used to train the base model (`mistralai/Mistral-7B-v0.1`), however it is likely to have included a mix of Web data and technical sources like books and code. See the [Falcon 180B model card](https://huggingface.co/tiiuae/falcon-180B#training-data) for an example of this.
99
+
100
+
101
+ ## Training and evaluation data
102
+
103
+ Zephyr 7B Alpha achieves the following results on the evaluation set:
104
+
105
+ - Loss: 0.4605
106
+ - Rewards/chosen: -0.5053
107
+ - Rewards/rejected: -1.8752
108
+ - Rewards/accuracies: 0.7812
109
+ - Rewards/margins: 1.3699
110
+ - Logps/rejected: -327.4286
111
+ - Logps/chosen: -297.1040
112
+ - Logits/rejected: -2.7153
113
+ - Logits/chosen: -2.7447
114
+
115
+ ## Training procedure
116
+
117
+ ### Training hyperparameters
118
+
119
+ The following hyperparameters were used during training:
120
+
121
+ - learning_rate: 5e-07
122
+ - train_batch_size: 2
123
+ - eval_batch_size: 4
124
+ - seed: 42
125
+ - distributed_type: multi-GPU
126
+ - num_devices: 16
127
+ - total_train_batch_size: 32
128
+ - total_eval_batch_size: 64
129
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
130
+ - lr_scheduler_type: linear
131
+ - lr_scheduler_warmup_ratio: 0.1
132
+ - num_epochs: 1
133
+
134
+ ### Training results
135
+
136
+ | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
137
+ |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
138
+ | 0.5602 | 0.05 | 100 | 0.5589 | -0.3359 | -0.8168 | 0.7188 | 0.4809 | -306.2607 | -293.7161 | -2.6554 | -2.6797 |
139
+ | 0.4852 | 0.1 | 200 | 0.5136 | -0.5310 | -1.4994 | 0.8125 | 0.9684 | -319.9124 | -297.6181 | -2.5762 | -2.5957 |
140
+ | 0.5212 | 0.15 | 300 | 0.5168 | -0.1686 | -1.1760 | 0.7812 | 1.0074 | -313.4444 | -290.3699 | -2.6865 | -2.7125 |
141
+ | 0.5496 | 0.21 | 400 | 0.4835 | -0.1617 | -1.7170 | 0.8281 | 1.5552 | -324.2635 | -290.2326 | -2.7947 | -2.8218 |
142
+ | 0.5209 | 0.26 | 500 | 0.5054 | -0.4778 | -1.6604 | 0.7344 | 1.1826 | -323.1325 | -296.5546 | -2.8388 | -2.8667 |
143
+ | 0.4617 | 0.31 | 600 | 0.4910 | -0.3738 | -1.5180 | 0.7656 | 1.1442 | -320.2848 | -294.4741 | -2.8234 | -2.8521 |
144
+ | 0.4452 | 0.36 | 700 | 0.4838 | -0.4591 | -1.6576 | 0.7031 | 1.1986 | -323.0770 | -296.1796 | -2.7401 | -2.7653 |
145
+ | 0.4674 | 0.41 | 800 | 0.5077 | -0.5692 | -1.8659 | 0.7656 | 1.2967 | -327.2416 | -298.3818 | -2.6740 | -2.6945 |
146
+ | 0.4656 | 0.46 | 900 | 0.4927 | -0.5279 | -1.6614 | 0.7656 | 1.1335 | -323.1518 | -297.5553 | -2.7817 | -2.8015 |
147
+ | 0.4102 | 0.52 | 1000 | 0.4772 | -0.5767 | -2.0667 | 0.7656 | 1.4900 | -331.2578 | -298.5311 | -2.7160 | -2.7455 |
148
+ | 0.4663 | 0.57 | 1100 | 0.4740 | -0.8038 | -2.1018 | 0.7656 | 1.2980 | -331.9604 | -303.0741 | -2.6994 | -2.7257 |
149
+ | 0.4737 | 0.62 | 1200 | 0.4716 | -0.3783 | -1.7015 | 0.7969 | 1.3232 | -323.9545 | -294.5634 | -2.6842 | -2.7135 |
150
+ | 0.4259 | 0.67 | 1300 | 0.4866 | -0.6239 | -1.9703 | 0.7812 | 1.3464 | -329.3312 | -299.4761 | -2.7046 | -2.7356 |
151
+ | 0.4935 | 0.72 | 1400 | 0.4747 | -0.5626 | -1.7600 | 0.7812 | 1.1974 | -325.1243 | -298.2491 | -2.7153 | -2.7444 |
152
+ | 0.4211 | 0.77 | 1500 | 0.4645 | -0.6099 | -1.9993 | 0.7656 | 1.3894 | -329.9109 | -299.1959 | -2.6944 | -2.7236 |
153
+ | 0.4931 | 0.83 | 1600 | 0.4684 | -0.6798 | -2.1082 | 0.7656 | 1.4285 | -332.0890 | -300.5934 | -2.7006 | -2.7305 |
154
+ | 0.5029 | 0.88 | 1700 | 0.4595 | -0.5063 | -1.8951 | 0.7812 | 1.3889 | -327.8267 | -297.1233 | -2.7108 | -2.7403 |
155
+ | 0.4965 | 0.93 | 1800 | 0.4613 | -0.5561 | -1.9079 | 0.7812 | 1.3518 | -328.0831 | -298.1203 | -2.7226 | -2.7523 |
156
+ | 0.4337 | 0.98 | 1900 | 0.4608 | -0.5066 | -1.8718 | 0.7656 | 1.3652 | -327.3599 | -297.1296 | -2.7175 | -2.7469 |
157
+
158
+
159
+ ### Framework versions
160
+
161
+ - Transformers 4.34.0
162
+ - Pytorch 2.0.1+cu118
163
+ - Datasets 2.12.0
164
+ - Tokenizers 0.14.0
165
+