|
Quantization made by Richard Erkhov. |
|
|
|
[Github](https://github.com/RichardErkhov) |
|
|
|
[Discord](https://discord.gg/pvy7H8DZMG) |
|
|
|
[Request more models](https://github.com/RichardErkhov/quant_request) |
|
|
|
|
|
phi3-4x4b-v1 - GGUF |
|
- Model creator: https://huggingface.co/Fizzarolli/ |
|
- Original model: https://huggingface.co/Fizzarolli/phi3-4x4b-v1/ |
|
|
|
|
|
| Name | Quant method | Size | |
|
| ---- | ---- | ---- | |
|
| [phi3-4x4b-v1.Q2_K.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.Q2_K.gguf) | Q2_K | 3.79GB | |
|
| [phi3-4x4b-v1.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.IQ3_XS.gguf) | IQ3_XS | 4.23GB | |
|
| [phi3-4x4b-v1.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.IQ3_S.gguf) | IQ3_S | 4.47GB | |
|
| [phi3-4x4b-v1.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.Q3_K_S.gguf) | Q3_K_S | 4.47GB | |
|
| [phi3-4x4b-v1.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.IQ3_M.gguf) | IQ3_M | 4.59GB | |
|
| [phi3-4x4b-v1.Q3_K.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.Q3_K.gguf) | Q3_K | 4.97GB | |
|
| [phi3-4x4b-v1.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.Q3_K_M.gguf) | Q3_K_M | 4.97GB | |
|
| [phi3-4x4b-v1.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.Q3_K_L.gguf) | Q3_K_L | 5.39GB | |
|
| [phi3-4x4b-v1.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.IQ4_XS.gguf) | IQ4_XS | 5.56GB | |
|
| [phi3-4x4b-v1.Q4_0.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.Q4_0.gguf) | Q4_0 | 5.83GB | |
|
| [phi3-4x4b-v1.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.IQ4_NL.gguf) | IQ4_NL | 5.87GB | |
|
| [phi3-4x4b-v1.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.Q4_K_S.gguf) | Q4_K_S | 5.88GB | |
|
| [phi3-4x4b-v1.Q4_K.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.Q4_K.gguf) | Q4_K | 6.25GB | |
|
| [phi3-4x4b-v1.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.Q4_K_M.gguf) | Q4_K_M | 6.25GB | |
|
| [phi3-4x4b-v1.Q4_1.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.Q4_1.gguf) | Q4_1 | 6.46GB | |
|
| [phi3-4x4b-v1.Q5_0.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.Q5_0.gguf) | Q5_0 | 7.1GB | |
|
| [phi3-4x4b-v1.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.Q5_K_S.gguf) | Q5_K_S | 7.1GB | |
|
| [phi3-4x4b-v1.Q5_K.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.Q5_K.gguf) | Q5_K | 7.32GB | |
|
| [phi3-4x4b-v1.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.Q5_K_M.gguf) | Q5_K_M | 7.32GB | |
|
| [phi3-4x4b-v1.Q5_1.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.Q5_1.gguf) | Q5_1 | 7.74GB | |
|
| [phi3-4x4b-v1.Q6_K.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.Q6_K.gguf) | Q6_K | 8.46GB | |
|
| [phi3-4x4b-v1.Q8_0.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.Q8_0.gguf) | Q8_0 | 10.96GB | |
|
|
|
|
|
|
|
|
|
Original model description: |
|
--- |
|
license: mit |
|
tags: |
|
- phi3 |
|
- nlp |
|
- moe |
|
datasets: |
|
- BEE-spoke-data/gutenberg-en-v1-clean |
|
- NeelNanda/pile-10k |
|
--- |
|
# phi 3 4x4b |
|
a continually pretrained phi3-mini sparse moe upcycle |
|
|
|
## benchmarks |
|
### ran locally |
|
|
|
| | Microsoft/phi-3-4k-instruct | Fizzarolli/phi3-4x4b-v1 | |
|
| ----------------------- | --------------------------- | ----------------------- | |
|
| MMLU acc. (0-shot) | **0.6799** | 0.6781 | |
|
| Hellaswag acc. (0-shot) | **0.6053** | 0.5962 | |
|
| ARC-E acc. (0-shot) | 0.8325 | **0.8367** | |
|
| ARC-C acc. (0-shot) | 0.5546 | **0.5606** | |
|
|
|
honestly i was expecting it to do worse :p, but those are all within a margin of error! so it didn't *lose* any performance, at least |
|
|
|
### open llm leaderboard |
|
todo! |
|
|
|
## support me on ko-fi! |
|
[~~please i need money to stay alive and keep making models~~](https://ko-fi.com/fizzai) |
|
|
|
## notes |
|
*not trained on instruct data.* it's pretty likely that it won't be much different from phi 3 if you use it like that, if not worse due to any forgetting of instruct formats during the continued training. |
|
|
|
## future experiments |
|
- the datasets for this were literally chosen on a whim. perhaps experiment with a further filtered [HuggingFaceFW/fineweb-edu](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu)? |
|
- actually freeze the gate layers next time (see [Chen et. al, 2023](https://arxiv.org/abs/2303.01610)), oops |
|
- MOAR TRAINING, this only went up to ~0.2 of an epoch because i ran out of dolar |
|
|
|
|