File size: 5,340 Bytes
e0ebe1b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
phi3-4x4b-v1 - GGUF
- Model creator: https://huggingface.co/Fizzarolli/
- Original model: https://huggingface.co/Fizzarolli/phi3-4x4b-v1/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [phi3-4x4b-v1.Q2_K.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.Q2_K.gguf) | Q2_K | 3.79GB |
| [phi3-4x4b-v1.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.IQ3_XS.gguf) | IQ3_XS | 4.23GB |
| [phi3-4x4b-v1.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.IQ3_S.gguf) | IQ3_S | 4.47GB |
| [phi3-4x4b-v1.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.Q3_K_S.gguf) | Q3_K_S | 4.47GB |
| [phi3-4x4b-v1.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.IQ3_M.gguf) | IQ3_M | 4.59GB |
| [phi3-4x4b-v1.Q3_K.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.Q3_K.gguf) | Q3_K | 4.97GB |
| [phi3-4x4b-v1.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.Q3_K_M.gguf) | Q3_K_M | 4.97GB |
| [phi3-4x4b-v1.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.Q3_K_L.gguf) | Q3_K_L | 5.39GB |
| [phi3-4x4b-v1.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.IQ4_XS.gguf) | IQ4_XS | 5.56GB |
| [phi3-4x4b-v1.Q4_0.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.Q4_0.gguf) | Q4_0 | 5.83GB |
| [phi3-4x4b-v1.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.IQ4_NL.gguf) | IQ4_NL | 5.87GB |
| [phi3-4x4b-v1.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.Q4_K_S.gguf) | Q4_K_S | 5.88GB |
| [phi3-4x4b-v1.Q4_K.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.Q4_K.gguf) | Q4_K | 6.25GB |
| [phi3-4x4b-v1.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.Q4_K_M.gguf) | Q4_K_M | 6.25GB |
| [phi3-4x4b-v1.Q4_1.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.Q4_1.gguf) | Q4_1 | 6.46GB |
| [phi3-4x4b-v1.Q5_0.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.Q5_0.gguf) | Q5_0 | 7.1GB |
| [phi3-4x4b-v1.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.Q5_K_S.gguf) | Q5_K_S | 7.1GB |
| [phi3-4x4b-v1.Q5_K.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.Q5_K.gguf) | Q5_K | 7.32GB |
| [phi3-4x4b-v1.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.Q5_K_M.gguf) | Q5_K_M | 7.32GB |
| [phi3-4x4b-v1.Q5_1.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.Q5_1.gguf) | Q5_1 | 7.74GB |
| [phi3-4x4b-v1.Q6_K.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.Q6_K.gguf) | Q6_K | 8.46GB |
| [phi3-4x4b-v1.Q8_0.gguf](https://huggingface.co/RichardErkhov/Fizzarolli_-_phi3-4x4b-v1-gguf/blob/main/phi3-4x4b-v1.Q8_0.gguf) | Q8_0 | 10.96GB |
Original model description:
---
license: mit
tags:
- phi3
- nlp
- moe
datasets:
- BEE-spoke-data/gutenberg-en-v1-clean
- NeelNanda/pile-10k
---
# phi 3 4x4b
a continually pretrained phi3-mini sparse moe upcycle
## benchmarks
### ran locally
| | Microsoft/phi-3-4k-instruct | Fizzarolli/phi3-4x4b-v1 |
| ----------------------- | --------------------------- | ----------------------- |
| MMLU acc. (0-shot) | **0.6799** | 0.6781 |
| Hellaswag acc. (0-shot) | **0.6053** | 0.5962 |
| ARC-E acc. (0-shot) | 0.8325 | **0.8367** |
| ARC-C acc. (0-shot) | 0.5546 | **0.5606** |
honestly i was expecting it to do worse :p, but those are all within a margin of error! so it didn't *lose* any performance, at least
### open llm leaderboard
todo!
## support me on ko-fi!
[~~please i need money to stay alive and keep making models~~](https://ko-fi.com/fizzai)
## notes
*not trained on instruct data.* it's pretty likely that it won't be much different from phi 3 if you use it like that, if not worse due to any forgetting of instruct formats during the continued training.
## future experiments
- the datasets for this were literally chosen on a whim. perhaps experiment with a further filtered [HuggingFaceFW/fineweb-edu](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu)?
- actually freeze the gate layers next time (see [Chen et. al, 2023](https://arxiv.org/abs/2303.01610)), oops
- MOAR TRAINING, this only went up to ~0.2 of an epoch because i ran out of dolar
|