root
commited on
Commit
·
fc80e24
1
Parent(s):
dca3495
First Boom!
Browse files- README.md +65 -3
- added_tokens.json +3 -0
- all_results.json +14 -0
- config.json +26 -0
- eval_results.json +9 -0
- generation_config.json +7 -0
- pytorch_model-00001-of-00002.bin +3 -0
- pytorch_model-00002-of-00002.bin +3 -0
- pytorch_model.bin.index.json +330 -0
- sft_lora_model/adapter_config.json +26 -0
- sft_lora_model/adapter_model.bin +3 -0
- sft_lora_model/added_tokens.json +3 -0
- sft_lora_model/special_tokens_map.json +24 -0
- sft_lora_model/tokenizer.model +3 -0
- sft_lora_model/tokenizer_config.json +35 -0
- special_tokens_map.json +24 -0
- tokenizer.model +3 -0
- tokenizer_config.json +35 -0
- train_results.json +8 -0
- trainer_state.json +407 -0
README.md
CHANGED
@@ -1,3 +1,65 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
tags:
|
5 |
+
- llama2
|
6 |
+
- llama2-chat
|
7 |
+
- llama2-chat-7B
|
8 |
+
- WASSA
|
9 |
+
- WASSA2024
|
10 |
+
---
|
11 |
+
# 7B WASSA2024 Track 1,2,3 baseline LLM based on LLama2-base 7B (Pure LoRA Training)
|
12 |
+
|
13 |
+
## Introduction
|
14 |
+
|
15 |
+
This is a baseline model for WASSA2024 Track 1,2,3. The overall template is shown in below:
|
16 |
+
|
17 |
+
"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n\n{yourContent}\n\n### Response:\n\n"
|
18 |
+
|
19 |
+
For each task, there is a customized instruction template and a result template, shown in below:
|
20 |
+
|
21 |
+
### Track 1
|
22 |
+
|
23 |
+
Instruction template:
|
24 |
+
|
25 |
+
"This is an Empathy Prediction task in Conversations. You are asked to predict the perceived empathy level of a specific individual at the conversation level. You need to make your prediction on the conversation history between speaker 1 and others to predict speaker 1's preceived empathy level. The empathy levels are divided into 9 levels. All annotations are in the range [0, level-1], and must be made using integers only.\n\nSpeaker1: {yourContent}"
|
26 |
+
|
27 |
+
Result template:
|
28 |
+
|
29 |
+
"The annotation result is as follows:\nThe Speaker1's preceived empathy level to this conversation is {preceivedEmpathyLevel}."
|
30 |
+
|
31 |
+
### Track 2
|
32 |
+
|
33 |
+
Instruction template:
|
34 |
+
|
35 |
+
"This is an Empathy and Emotion Prediction task. You are asked to predict the perceived empathy, emotion polarity, emotion intensity, and self disclosure status at the speech-turn-level in a conversation. You need to make predictions based on the last statement from speaker 1 (and the previous conversation content if provided). The emotion intensity and empathy level are divided into 16 levels, while emotion polarity and self-disclosure status are divided into 10 levels. All annotations are in the range [0, level-1], and must be made using integers only.\n\nSpeaker1: {yourContent}"
|
36 |
+
|
37 |
+
Result Template:
|
38 |
+
|
39 |
+
"The annotation result of the final statement of the Speaker1 is as follows:\nThe emotion intensity is {emotionValue}, the empathy level is {empathyValue}, the emotion polarity is {emotionPolarity}, and the self disclosure status is {selfDisclosure}."
|
40 |
+
|
41 |
+
If you want to input multiturn conversation, you need to add "Speaker1", "Speaker2" index manully. Here is an example:
|
42 |
+
|
43 |
+
"This is an Empathy and Emotion Prediction task. You are asked to predict the perceived empathy, emotion polarity, emotion intensity, and self disclosure status at the speech-turn-level in a conversation. You need to make predictions based on the last statement from speaker 1 (and the previous conversation content if provided). The emotion intensity and empathy level are divided into 16 levels, while emotion polarity and self-disclosure status are divided into 10 levels. All annotations are in the range [0, level-1], and must be made using integers only.\n\nSpeaker2: what did you think about this article\nSpeaker1: It's definitely really sad to read, considering everything they're all going through. What did you think?\nSpeaker2: I think it's super sad... they seem to never catch a break, always struggling.\nSpeaker1: I can't imagine just living in an area that is constantly being ravaged by hurricanes or earthquakes. I take my location for granted.\nSpeaker2: Me too.. I also can't imagine living in the poverty and such.. It's crazy to think that people still live like that sometimes. The gap between first world countires and places like that is crazy to em\nSpeaker1: It also seems unnecessary for there to even be such a gap. With all of the wealthy countries out there, I hope Haiti gets the help it deserves, because we, and other countries, can certainly afford it.\nSpeaker2: Agreed... with how frivilous and unnessary our spending is, it's so sad that countries like that don't get more support or guidance.\nSpeaker1: It's disheartening, isn't it? Places have the ability, money, time, and knowledge, and still refuse to help.\nSpeaker2: It is so sad... Or even the millionaires/billionaires out there. I know some of them donate, but at some point, you can only spend so much money. Why not put it to use.\nSpeaker1: Yep, exactly. It's just very frustrating overall. I think it's hard for others because they don't understand until their houses are being swept away for torrential floods.\nSpeaker2: It is hard to fathom/process, it's hard for me to really imagine\nSpeaker1: Give it twenty more years, for the more compassionate people to come into leadership. I think we'll see a big difference."
|
44 |
+
|
45 |
+
### Trak 3
|
46 |
+
|
47 |
+
Instruction template:
|
48 |
+
|
49 |
+
"This is an Empathy Prediction task. You are asked to predict both the empathy concern and personal distress at the essay level. You need to make predictions based on all of the speaker's utterances, also known as the person's essay. The empathy level and distress level are divided into 43 levels. All annotations are in the range [0, level-1], and must be made using integers only.\n\nPerson's Essay: {yourContent}"
|
50 |
+
|
51 |
+
Result template:
|
52 |
+
|
53 |
+
"The annotation result is as follows:\nThe empathy level is {empathLevel}, and the distress level is {distressLevel}."
|
54 |
+
|
55 |
+
## Train Detail
|
56 |
+
1. Trianing Framework: This model is trained on modified [ChinChunMei-LLM](https://github.com/RicardoLeeV587/ChinChunMei-LLM) Framework.
|
57 |
+
2. Tokenizer: This model uses Llama2 tokenizer with a extra [PAD] added into the vocal. The vocab number is 32001
|
58 |
+
3. Training Parameters: **The hyperparams are: LoRA rank: 8, LoRA Alpha:32, LoRA Dropout: 0.05, LoRA Trainable Params: "q_proj,v_proj,k_proj,o_proj,gate_proj,down_proj,up_proj" LR: 1e-5, Warmup ratio: 0.001.**
|
59 |
+
4. Training Resource: 4\*V100, 4 hours.
|
60 |
+
5. Loss info: see the all_result.json
|
61 |
+
|
62 |
+
## Licence
|
63 |
+
|
64 |
+
This repository's models are open-sourced under the Apache-2.0 license, and their weight usage must adhere to LLama2 [MODEL LICENCE](LICENSE) license.
|
65 |
+
|
added_tokens.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"[PAD]": 32000
|
3 |
+
}
|
all_results.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"eval_loss": 0.04649091511964798,
|
4 |
+
"eval_runtime": 85.6214,
|
5 |
+
"eval_samples": 974,
|
6 |
+
"eval_samples_per_second": 11.376,
|
7 |
+
"eval_steps_per_second": 1.425,
|
8 |
+
"perplexity": 1.04758856180856,
|
9 |
+
"train_loss": 0.18567189055712655,
|
10 |
+
"train_runtime": 15471.5941,
|
11 |
+
"train_samples": 24306,
|
12 |
+
"train_samples_per_second": 4.707,
|
13 |
+
"train_steps_per_second": 0.037
|
14 |
+
}
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "RicardoLee/Llama2-chat-7B-WASSA2024_VER1",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"bos_token_id": 1,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 4096,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 11008,
|
12 |
+
"max_position_embeddings": 2048,
|
13 |
+
"model_type": "llama",
|
14 |
+
"num_attention_heads": 32,
|
15 |
+
"num_hidden_layers": 32,
|
16 |
+
"num_key_value_heads": 32,
|
17 |
+
"pad_token_id": 0,
|
18 |
+
"pretraining_tp": 1,
|
19 |
+
"rms_norm_eps": 1e-06,
|
20 |
+
"rope_scaling": null,
|
21 |
+
"tie_word_embeddings": false,
|
22 |
+
"torch_dtype": "float16",
|
23 |
+
"transformers_version": "4.31.0",
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 32001
|
26 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"eval_loss": 0.04649091511964798,
|
4 |
+
"eval_runtime": 85.6214,
|
5 |
+
"eval_samples": 974,
|
6 |
+
"eval_samples_per_second": 11.376,
|
7 |
+
"eval_steps_per_second": 1.425,
|
8 |
+
"perplexity": 1.04758856180856
|
9 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.31.0"
|
7 |
+
}
|
pytorch_model-00001-of-00002.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad6f39911593a814653c1f2c87920696037d7faa262ddcc713b21bf6700e9a01
|
3 |
+
size 9976642750
|
pytorch_model-00002-of-00002.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c2b0bb8f667083d776a5d3f95380391ab71f00bc54f67bf94ea47907aec03f69
|
3 |
+
size 3500323731
|
pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 13476855808
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "pytorch_model-00002-of-00002.bin",
|
7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00002.bin",
|
8 |
+
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
16 |
+
"model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
17 |
+
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
18 |
+
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
19 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
20 |
+
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
21 |
+
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
22 |
+
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
23 |
+
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
24 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
25 |
+
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
26 |
+
"model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
27 |
+
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
28 |
+
"model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
29 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
30 |
+
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
31 |
+
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
32 |
+
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
33 |
+
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
34 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
35 |
+
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
36 |
+
"model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
37 |
+
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
38 |
+
"model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
39 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
40 |
+
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
41 |
+
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
42 |
+
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
43 |
+
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
44 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
45 |
+
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
46 |
+
"model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
47 |
+
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
48 |
+
"model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
49 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
50 |
+
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
51 |
+
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
52 |
+
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
53 |
+
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
54 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
55 |
+
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
56 |
+
"model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
57 |
+
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
58 |
+
"model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
59 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
60 |
+
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
61 |
+
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
62 |
+
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
63 |
+
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
64 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
65 |
+
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
66 |
+
"model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
67 |
+
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
68 |
+
"model.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
69 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
70 |
+
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
71 |
+
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
72 |
+
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
73 |
+
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
74 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
75 |
+
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
76 |
+
"model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
77 |
+
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
78 |
+
"model.layers.15.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
79 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
80 |
+
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
81 |
+
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
82 |
+
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
83 |
+
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
84 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
85 |
+
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
86 |
+
"model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
87 |
+
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
88 |
+
"model.layers.16.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
89 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
90 |
+
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
91 |
+
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
92 |
+
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
93 |
+
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
94 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
95 |
+
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
96 |
+
"model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
97 |
+
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
98 |
+
"model.layers.17.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
99 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
100 |
+
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
101 |
+
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
102 |
+
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
103 |
+
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
104 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
105 |
+
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
106 |
+
"model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
107 |
+
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
108 |
+
"model.layers.18.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
109 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
110 |
+
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
111 |
+
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
112 |
+
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
113 |
+
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
114 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
115 |
+
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
116 |
+
"model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
117 |
+
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
118 |
+
"model.layers.19.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
119 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
120 |
+
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
121 |
+
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
122 |
+
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
123 |
+
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
124 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
125 |
+
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
126 |
+
"model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
127 |
+
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
128 |
+
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
129 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
130 |
+
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
131 |
+
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
132 |
+
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
133 |
+
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
134 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
135 |
+
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
136 |
+
"model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
137 |
+
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
138 |
+
"model.layers.20.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
139 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
140 |
+
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
141 |
+
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
142 |
+
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
143 |
+
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
144 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
145 |
+
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
146 |
+
"model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
147 |
+
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
148 |
+
"model.layers.21.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
149 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
150 |
+
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
151 |
+
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
152 |
+
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
153 |
+
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
154 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
155 |
+
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
156 |
+
"model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
157 |
+
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
158 |
+
"model.layers.22.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
159 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
160 |
+
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
161 |
+
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
162 |
+
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
163 |
+
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
164 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
165 |
+
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
166 |
+
"model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
167 |
+
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
168 |
+
"model.layers.23.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
169 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
170 |
+
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
171 |
+
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
172 |
+
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
173 |
+
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
174 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
175 |
+
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
176 |
+
"model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
177 |
+
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
178 |
+
"model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
179 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
180 |
+
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
181 |
+
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
182 |
+
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
183 |
+
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
184 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
185 |
+
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
186 |
+
"model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
187 |
+
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
188 |
+
"model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
189 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
190 |
+
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
191 |
+
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
192 |
+
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
193 |
+
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
194 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
195 |
+
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
196 |
+
"model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
197 |
+
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
198 |
+
"model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
199 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
200 |
+
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
201 |
+
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
202 |
+
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
203 |
+
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
204 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
205 |
+
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
206 |
+
"model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
207 |
+
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
208 |
+
"model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
209 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
210 |
+
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
211 |
+
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
212 |
+
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
213 |
+
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
214 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
215 |
+
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
216 |
+
"model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
217 |
+
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
218 |
+
"model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
219 |
+
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
220 |
+
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
221 |
+
"model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
222 |
+
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
223 |
+
"model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
224 |
+
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
225 |
+
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
226 |
+
"model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
227 |
+
"model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
228 |
+
"model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
229 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
230 |
+
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
231 |
+
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
232 |
+
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
233 |
+
"model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
234 |
+
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
235 |
+
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
236 |
+
"model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
237 |
+
"model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
238 |
+
"model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
239 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
240 |
+
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
241 |
+
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
242 |
+
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
243 |
+
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
244 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
245 |
+
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
246 |
+
"model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
247 |
+
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
248 |
+
"model.layers.30.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
249 |
+
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
250 |
+
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
251 |
+
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
252 |
+
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
253 |
+
"model.layers.30.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
254 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
255 |
+
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
256 |
+
"model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
257 |
+
"model.layers.30.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
258 |
+
"model.layers.31.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
259 |
+
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
260 |
+
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
261 |
+
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
262 |
+
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
263 |
+
"model.layers.31.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
264 |
+
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
265 |
+
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
266 |
+
"model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
267 |
+
"model.layers.31.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
268 |
+
"model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
269 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
270 |
+
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
271 |
+
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
272 |
+
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
273 |
+
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
274 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
275 |
+
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
276 |
+
"model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
277 |
+
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
278 |
+
"model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
279 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
280 |
+
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
281 |
+
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
282 |
+
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
283 |
+
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
284 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
285 |
+
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
286 |
+
"model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
287 |
+
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
288 |
+
"model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
289 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
290 |
+
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
291 |
+
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
292 |
+
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
293 |
+
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
294 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
295 |
+
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
296 |
+
"model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
297 |
+
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
298 |
+
"model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
299 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
300 |
+
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
301 |
+
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
302 |
+
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
303 |
+
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
304 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
305 |
+
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
306 |
+
"model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
307 |
+
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
308 |
+
"model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
309 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
310 |
+
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
311 |
+
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
312 |
+
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
313 |
+
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
314 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
315 |
+
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
316 |
+
"model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
317 |
+
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
318 |
+
"model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
319 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
320 |
+
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
321 |
+
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
322 |
+
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
323 |
+
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
324 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
325 |
+
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
326 |
+
"model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
327 |
+
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
328 |
+
"model.norm.weight": "pytorch_model-00002-of-00002.bin"
|
329 |
+
}
|
330 |
+
}
|
sft_lora_model/adapter_config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"base_model_name_or_path": "/data3/litian/Redemption/LLama-2/chat/7B_HF",
|
3 |
+
"bias": "none",
|
4 |
+
"enable_lora": null,
|
5 |
+
"fan_in_fan_out": false,
|
6 |
+
"inference_mode": true,
|
7 |
+
"lora_alpha": 32.0,
|
8 |
+
"lora_dropout": 0.05,
|
9 |
+
"merge_weights": false,
|
10 |
+
"modules_to_save": [
|
11 |
+
"embed_tokens",
|
12 |
+
"lm_head"
|
13 |
+
],
|
14 |
+
"peft_type": "LORA",
|
15 |
+
"r": 8,
|
16 |
+
"target_modules": [
|
17 |
+
"q_proj",
|
18 |
+
"v_proj",
|
19 |
+
"k_proj",
|
20 |
+
"o_proj",
|
21 |
+
"gate_proj",
|
22 |
+
"down_proj",
|
23 |
+
"up_proj"
|
24 |
+
],
|
25 |
+
"task_type": "CAUSAL_LM"
|
26 |
+
}
|
sft_lora_model/adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a2643229e99755c2bc079b4c298dbb3e9db7618fd9e26cec6bf8a8a086fda978
|
3 |
+
size 564352189
|
sft_lora_model/added_tokens.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"[PAD]": 32000
|
3 |
+
}
|
sft_lora_model/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "[PAD]",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": true,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
sft_lora_model/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
sft_lora_model/tokenizer_config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"bos_token": {
|
5 |
+
"__type": "AddedToken",
|
6 |
+
"content": "<s>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": true,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"clean_up_tokenization_spaces": false,
|
13 |
+
"eos_token": {
|
14 |
+
"__type": "AddedToken",
|
15 |
+
"content": "</s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": true,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"legacy": true,
|
22 |
+
"model_max_length": 1000000000000000019884624838656,
|
23 |
+
"pad_token": null,
|
24 |
+
"sp_model_kwargs": {},
|
25 |
+
"tokenizer_class": "LlamaTokenizer",
|
26 |
+
"unk_token": {
|
27 |
+
"__type": "AddedToken",
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false
|
33 |
+
},
|
34 |
+
"use_fast": true
|
35 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "[PAD]",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": true,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
tokenizer_config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"bos_token": {
|
5 |
+
"__type": "AddedToken",
|
6 |
+
"content": "<s>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": true,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"clean_up_tokenization_spaces": false,
|
13 |
+
"eos_token": {
|
14 |
+
"__type": "AddedToken",
|
15 |
+
"content": "</s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": true,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"legacy": true,
|
22 |
+
"model_max_length": 1000000000000000019884624838656,
|
23 |
+
"pad_token": null,
|
24 |
+
"sp_model_kwargs": {},
|
25 |
+
"tokenizer_class": "LlamaTokenizer",
|
26 |
+
"unk_token": {
|
27 |
+
"__type": "AddedToken",
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false
|
33 |
+
},
|
34 |
+
"use_fast": true
|
35 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"train_loss": 0.18567189055712655,
|
4 |
+
"train_runtime": 15471.5941,
|
5 |
+
"train_samples": 24306,
|
6 |
+
"train_samples_per_second": 4.707,
|
7 |
+
"train_steps_per_second": 0.037
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,407 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.995722277064824,
|
5 |
+
"global_step": 569,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.01,
|
12 |
+
"learning_rate": 0.0,
|
13 |
+
"loss": 1.6786,
|
14 |
+
"step": 1
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.05,
|
18 |
+
"learning_rate": 9.998088142969587e-06,
|
19 |
+
"loss": 1.64,
|
20 |
+
"step": 10
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.11,
|
24 |
+
"learning_rate": 9.985017573980262e-06,
|
25 |
+
"loss": 1.06,
|
26 |
+
"step": 20
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.16,
|
30 |
+
"learning_rate": 9.956012654497073e-06,
|
31 |
+
"loss": 0.486,
|
32 |
+
"step": 30
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.21,
|
36 |
+
"learning_rate": 9.911850333228427e-06,
|
37 |
+
"loss": 0.2374,
|
38 |
+
"step": 40
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.26,
|
42 |
+
"learning_rate": 9.865696363132769e-06,
|
43 |
+
"loss": 0.1837,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.32,
|
48 |
+
"learning_rate": 9.7946219754852e-06,
|
49 |
+
"loss": 0.1587,
|
50 |
+
"step": 60
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.37,
|
54 |
+
"learning_rate": 9.708883781112711e-06,
|
55 |
+
"loss": 0.1517,
|
56 |
+
"step": 70
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.42,
|
60 |
+
"learning_rate": 9.629910009876223e-06,
|
61 |
+
"loss": 0.1553,
|
62 |
+
"step": 80
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.47,
|
66 |
+
"learning_rate": 9.51846738818602e-06,
|
67 |
+
"loss": 0.1469,
|
68 |
+
"step": 90
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 0.53,
|
72 |
+
"learning_rate": 9.39320554720971e-06,
|
73 |
+
"loss": 0.145,
|
74 |
+
"step": 100
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.53,
|
78 |
+
"eval_loss": 0.05455470830202103,
|
79 |
+
"eval_runtime": 85.5684,
|
80 |
+
"eval_samples_per_second": 11.383,
|
81 |
+
"eval_steps_per_second": 1.426,
|
82 |
+
"step": 100
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"epoch": 0.58,
|
86 |
+
"learning_rate": 9.297503309182422e-06,
|
87 |
+
"loss": 0.1549,
|
88 |
+
"step": 110
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"epoch": 0.63,
|
92 |
+
"learning_rate": 9.149650063920841e-06,
|
93 |
+
"loss": 0.1435,
|
94 |
+
"step": 120
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.68,
|
98 |
+
"learning_rate": 8.989105585268073e-06,
|
99 |
+
"loss": 0.1414,
|
100 |
+
"step": 130
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.74,
|
104 |
+
"learning_rate": 8.816360880276967e-06,
|
105 |
+
"loss": 0.1421,
|
106 |
+
"step": 140
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.79,
|
110 |
+
"learning_rate": 8.631944269006895e-06,
|
111 |
+
"loss": 0.1391,
|
112 |
+
"step": 150
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"epoch": 0.84,
|
116 |
+
"learning_rate": 8.436419768716853e-06,
|
117 |
+
"loss": 0.1386,
|
118 |
+
"step": 160
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"epoch": 0.9,
|
122 |
+
"learning_rate": 8.230385368882732e-06,
|
123 |
+
"loss": 0.1382,
|
124 |
+
"step": 170
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"epoch": 0.95,
|
128 |
+
"learning_rate": 8.014471202314443e-06,
|
129 |
+
"loss": 0.1382,
|
130 |
+
"step": 180
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"epoch": 1.0,
|
134 |
+
"learning_rate": 7.789337617966275e-06,
|
135 |
+
"loss": 0.1357,
|
136 |
+
"step": 190
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.05,
|
140 |
+
"learning_rate": 7.5794033237905e-06,
|
141 |
+
"loss": 0.1408,
|
142 |
+
"step": 200
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 1.05,
|
146 |
+
"eval_loss": 0.048922911286354065,
|
147 |
+
"eval_runtime": 85.5902,
|
148 |
+
"eval_samples_per_second": 11.38,
|
149 |
+
"eval_steps_per_second": 1.425,
|
150 |
+
"step": 200
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 1.11,
|
154 |
+
"learning_rate": 7.338671397287409e-06,
|
155 |
+
"loss": 0.1341,
|
156 |
+
"step": 210
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 1.16,
|
160 |
+
"learning_rate": 7.1158757783214904e-06,
|
161 |
+
"loss": 0.1391,
|
162 |
+
"step": 220
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"epoch": 1.21,
|
166 |
+
"learning_rate": 6.862201608610134e-06,
|
167 |
+
"loss": 0.1343,
|
168 |
+
"step": 230
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"epoch": 1.26,
|
172 |
+
"learning_rate": 6.602832106793113e-06,
|
173 |
+
"loss": 0.1316,
|
174 |
+
"step": 240
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.32,
|
178 |
+
"learning_rate": 6.338560525031794e-06,
|
179 |
+
"loss": 0.1316,
|
180 |
+
"step": 250
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"epoch": 1.37,
|
184 |
+
"learning_rate": 6.0701951079422615e-06,
|
185 |
+
"loss": 0.1313,
|
186 |
+
"step": 260
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"epoch": 1.42,
|
190 |
+
"learning_rate": 5.825844147403353e-06,
|
191 |
+
"loss": 0.1347,
|
192 |
+
"step": 270
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 1.47,
|
196 |
+
"learning_rate": 5.579447229838992e-06,
|
197 |
+
"loss": 0.1337,
|
198 |
+
"step": 280
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 1.53,
|
202 |
+
"learning_rate": 5.3040158758857886e-06,
|
203 |
+
"loss": 0.1315,
|
204 |
+
"step": 290
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.58,
|
208 |
+
"learning_rate": 5.027654723907197e-06,
|
209 |
+
"loss": 0.1309,
|
210 |
+
"step": 300
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"epoch": 1.58,
|
214 |
+
"eval_loss": 0.04729650914669037,
|
215 |
+
"eval_runtime": 85.6206,
|
216 |
+
"eval_samples_per_second": 11.376,
|
217 |
+
"eval_steps_per_second": 1.425,
|
218 |
+
"step": 300
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 1.63,
|
222 |
+
"learning_rate": 4.751208993096637e-06,
|
223 |
+
"loss": 0.1307,
|
224 |
+
"step": 310
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 1.68,
|
228 |
+
"learning_rate": 4.475524161322288e-06,
|
229 |
+
"loss": 0.1305,
|
230 |
+
"step": 320
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 1.74,
|
234 |
+
"learning_rate": 4.2014433793290435e-06,
|
235 |
+
"loss": 0.1298,
|
236 |
+
"step": 330
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 1.79,
|
240 |
+
"learning_rate": 3.92980489205774e-06,
|
241 |
+
"loss": 0.1308,
|
242 |
+
"step": 340
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 1.84,
|
246 |
+
"learning_rate": 3.6614394749682057e-06,
|
247 |
+
"loss": 0.13,
|
248 |
+
"step": 350
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 1.9,
|
252 |
+
"learning_rate": 3.3971678932068875e-06,
|
253 |
+
"loss": 0.1296,
|
254 |
+
"step": 360
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 1.95,
|
258 |
+
"learning_rate": 3.1377983913898673e-06,
|
259 |
+
"loss": 0.1289,
|
260 |
+
"step": 370
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 2.0,
|
264 |
+
"learning_rate": 2.8841242216785116e-06,
|
265 |
+
"loss": 0.129,
|
266 |
+
"step": 380
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 2.05,
|
270 |
+
"learning_rate": 2.6369212177078306e-06,
|
271 |
+
"loss": 0.1291,
|
272 |
+
"step": 390
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 2.11,
|
276 |
+
"learning_rate": 2.3969454217874325e-06,
|
277 |
+
"loss": 0.1277,
|
278 |
+
"step": 400
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 2.11,
|
282 |
+
"eval_loss": 0.046792980283498764,
|
283 |
+
"eval_runtime": 85.593,
|
284 |
+
"eval_samples_per_second": 11.379,
|
285 |
+
"eval_steps_per_second": 1.425,
|
286 |
+
"step": 400
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.16,
|
290 |
+
"learning_rate": 2.164930772631996e-06,
|
291 |
+
"loss": 0.1276,
|
292 |
+
"step": 410
|
293 |
+
},
|
294 |
+
{
|
295 |
+
"epoch": 2.21,
|
296 |
+
"learning_rate": 1.94158686069306e-06,
|
297 |
+
"loss": 0.1275,
|
298 |
+
"step": 420
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"epoch": 2.26,
|
302 |
+
"learning_rate": 1.7275967579572427e-06,
|
303 |
+
"loss": 0.1296,
|
304 |
+
"step": 430
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"epoch": 2.32,
|
308 |
+
"learning_rate": 1.5236149288481428e-06,
|
309 |
+
"loss": 0.1275,
|
310 |
+
"step": 440
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 2.37,
|
314 |
+
"learning_rate": 1.3302652286212397e-06,
|
315 |
+
"loss": 0.1287,
|
316 |
+
"step": 450
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.42,
|
320 |
+
"learning_rate": 1.148138995373459e-06,
|
321 |
+
"loss": 0.1267,
|
322 |
+
"step": 460
|
323 |
+
},
|
324 |
+
{
|
325 |
+
"epoch": 2.47,
|
326 |
+
"learning_rate": 9.777932415027608e-07,
|
327 |
+
"loss": 0.1282,
|
328 |
+
"step": 470
|
329 |
+
},
|
330 |
+
{
|
331 |
+
"epoch": 2.53,
|
332 |
+
"learning_rate": 8.197489501489924e-07,
|
333 |
+
"loss": 0.1249,
|
334 |
+
"step": 480
|
335 |
+
},
|
336 |
+
{
|
337 |
+
"epoch": 2.58,
|
338 |
+
"learning_rate": 6.744894818261311e-07,
|
339 |
+
"loss": 0.127,
|
340 |
+
"step": 490
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"epoch": 2.63,
|
344 |
+
"learning_rate": 5.424590961190474e-07,
|
345 |
+
"loss": 0.1253,
|
346 |
+
"step": 500
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 2.63,
|
350 |
+
"eval_loss": 0.046507786959409714,
|
351 |
+
"eval_runtime": 85.5909,
|
352 |
+
"eval_samples_per_second": 11.38,
|
353 |
+
"eval_steps_per_second": 1.425,
|
354 |
+
"step": 500
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 2.69,
|
358 |
+
"learning_rate": 4.240615929660341e-07,
|
359 |
+
"loss": 0.1279,
|
360 |
+
"step": 510
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 2.74,
|
364 |
+
"learning_rate": 3.1965907768255035e-07,
|
365 |
+
"loss": 0.128,
|
366 |
+
"step": 520
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 2.79,
|
370 |
+
"learning_rate": 2.2957085350325092e-07,
|
371 |
+
"loss": 0.1288,
|
372 |
+
"step": 530
|
373 |
+
},
|
374 |
+
{
|
375 |
+
"epoch": 2.84,
|
376 |
+
"learning_rate": 1.540724450293035e-07,
|
377 |
+
"loss": 0.1264,
|
378 |
+
"step": 540
|
379 |
+
},
|
380 |
+
{
|
381 |
+
"epoch": 2.9,
|
382 |
+
"learning_rate": 9.339475556770006e-08,
|
383 |
+
"loss": 0.1274,
|
384 |
+
"step": 550
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 2.95,
|
388 |
+
"learning_rate": 4.77233609397082e-08,
|
389 |
+
"loss": 0.1277,
|
390 |
+
"step": 560
|
391 |
+
},
|
392 |
+
{
|
393 |
+
"epoch": 3.0,
|
394 |
+
"step": 569,
|
395 |
+
"total_flos": 1.6024405879092675e+18,
|
396 |
+
"train_loss": 0.18567189055712655,
|
397 |
+
"train_runtime": 15471.5941,
|
398 |
+
"train_samples_per_second": 4.707,
|
399 |
+
"train_steps_per_second": 0.037
|
400 |
+
}
|
401 |
+
],
|
402 |
+
"max_steps": 569,
|
403 |
+
"num_train_epochs": 4,
|
404 |
+
"total_flos": 1.6024405879092675e+18,
|
405 |
+
"trial_name": null,
|
406 |
+
"trial_params": null
|
407 |
+
}
|