File size: 5,808 Bytes
c8011f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
from functools import partial
import numpy as np

import torch
from torch import nn
# from torch.nn.init import trunc_normal_

def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
    # Convert tensor to float32
    tensor = tensor.float()
    with torch.no_grad():
        tensor.normal_(mean, std)
        valid = (tensor > a) & (tensor < b)
        ind = valid.max()
        tensor = tensor[ind].uniform_(a, b)
    return tensor.half()

def get_2d_sincos_pos_embed(embed_dim, image_size):
    """
    image_size: image_size or (image_height, image_width)
    return:
    pos_embed: [image_height, image_width, embed_dim]
    """
    if isinstance(image_size, int):
        grid_h_size, grid_w_size = image_size, image_size
    else:
        grid_h_size, grid_w_size = image_size[0], image_size[1]

    grid_h = np.arange(grid_h_size, dtype=np.float32)
    grid_w = np.arange(grid_w_size, dtype=np.float32)
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)

    pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
    return pos_embed


def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
    assert embed_dim % 2 == 0

    # use half of dimensions to encode grid_h
    emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim // 2, grid[0])  # (H, W, D/2)
    emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim // 2, grid[1])  # (H, W, D/2)

    emb = np.concatenate([emb_h, emb_w], axis=-1)  # (H, W, D)
    return emb

def get_1d_sincos_pos_embed_from_grid_new(embed_dim, pos):
    """
    embed_dim: output dimension for each position
    pos: a list of positions to be encoded: size (H, W)
    out: (H, W, D)
    """
    assert embed_dim % 2 == 0
    omega = np.arange(embed_dim // 2, dtype=np.float32)
    omega /= embed_dim / 2.
    omega = 1. / 10000 ** omega  # (D/2,)

    out = np.einsum('hw,d->hwd', pos, omega)  # (H, W, D/2), outer product

    emb_sin = np.sin(out)  # (H, W, D/2)
    emb_cos = np.cos(out)  # (H, W, D/2)

    emb = np.concatenate([emb_sin, emb_cos], axis=-1)  # (H, W, D)
    return emb

class Resampler(nn.Module):
    """
    A 2D perceiver-resampler network with one cross attention layers by
       given learnable queries and 2d sincos pos_emb
    Outputs:
        A tensor with the shape of (batch_size, num_queries, embed_dim)
    """

    def __init__(
            self,
            num_queries,
            embed_dim,
            num_heads,
            kv_dim=None,
            norm_layer=partial(nn.LayerNorm, eps=1e-6),
            adaptive=False,
            max_size=(70, 70),
    ):
        super().__init__()
        self.num_queries = num_queries
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.adaptive = adaptive
        self.max_size = max_size

        self.query = nn.Parameter(torch.zeros(self.num_queries, embed_dim))
        trunc_normal_(self.query, std=.02)

        if kv_dim is not None and kv_dim != embed_dim:
            self.kv_proj = nn.Linear(kv_dim, embed_dim, bias=False)
        else:
            self.kv_proj = nn.Identity()

        self.attn = nn.MultiheadAttention(embed_dim, num_heads)
        self.ln_q = norm_layer(embed_dim)
        self.ln_kv = norm_layer(embed_dim)

        self.ln_post = norm_layer(embed_dim)
        self.proj = nn.Parameter((embed_dim ** -0.5) * torch.randn(embed_dim, embed_dim))

        self._set_2d_pos_cache(self.max_size)
        self.apply(self._init_weights)

    def _set_2d_pos_cache(self, max_size, device='cpu'):
        pos_embed = torch.from_numpy(get_2d_sincos_pos_embed(self.embed_dim, max_size)).float().to(device)
        self.register_buffer("pos_embed", pos_embed, persistent=False)

    def _adjust_pos_cache(self, tgt_sizes, device):
        max_h = torch.max(tgt_sizes[:, 0])
        max_w = torch.max(tgt_sizes[:, 1])
        if max_h > self.max_size[0] or max_w > self.max_size[1]:
            self.max_size = [max(max_h, self.max_size[0]), max(max_w, self.max_size[1])]
            self._set_2d_pos_cache(self.max_size, device)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def forward(self, x, tgt_sizes=None):
        assert x.shape[0] == tgt_sizes.shape[0]
        bs = x.shape[0]

        device = x.device
        dtype = x.dtype

        patch_len = tgt_sizes[:, 0] * tgt_sizes[:, 1]

        self._adjust_pos_cache(tgt_sizes, device=device)

        max_patch_len = torch.max(patch_len)
        key_padding_mask = torch.zeros((bs, max_patch_len), dtype=torch.bool, device=device)

        pos_embed = []
        for i in range(bs):
            tgt_h, tgt_w = tgt_sizes[i]
            pos_embed.append(self.pos_embed[:tgt_h, :tgt_w, :].reshape((tgt_h * tgt_w, -1)).to(dtype))  # patches * D
            key_padding_mask[i, patch_len[i]:] = True

        pos_embed = torch.nn.utils.rnn.pad_sequence(
            pos_embed, batch_first=True, padding_value=0.0).permute(1, 0, 2)  # BLD => L * B * D

        x = self.kv_proj(x)  # B * L * D
        x = self.ln_kv(x).permute(1, 0, 2)  # L * B * D

        q = self.ln_q(self.query)  # Q * D

        out = self.attn(
            self._repeat(q, bs),  # Q * B * D
            x + pos_embed,  # L * B * D +  L * B * D
            x,
            key_padding_mask=key_padding_mask)[0]
        #  out: Q * B * D
        x = out.permute(1, 0, 2)  # B * Q * D

        x = self.ln_post(x)
        x = x @ self.proj
        return x

    def _repeat(self, query, N: int):
        return query.unsqueeze(1).repeat(1, N, 1)