File size: 8,269 Bytes
9909305 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright @2023 AI, ZHIHU Inc. (zhihu.com)
#
# @author: wangchongyi <wangchongyi@zhihu.com>
# @date: 2023/9/1
#
# coding=utf-8
# Copyright 2024 RhapsodyAI. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from torch import nn
import math
from dataclasses import dataclass
from typing import Optional, Tuple
from transformers.utils import ModelOutput
from transformers.modeling_utils import PreTrainedModel
from .configuration_siglip import SiglipVisionConfig
from .configuration_minicpm import MiniCPMConfig
from .configuration_minicpmv import MiniCPMVConfig
from .resampler import Resampler
from .modeling_minicpm import MiniCPMForCausalLM
from .modeling_siglip import SiglipVisionModel
from transformers import LlamaTokenizer # for text processing
@dataclass
class CausalVLMOutput(ModelOutput):
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
vision_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
class MiniCPMVForCausalLM(PreTrainedModel):
model_type = "minicpm"
_supports_flash_attn_2 = True
def __init__(self, config: MiniCPMVConfig, adaptive=False):
super().__init__(config)
llm_config = config.llm_config
vpm_config = config.vpm_config
self.query_num = config.query_num
self.patch_size = vpm_config.patch_size
self.adaptive = adaptive
self.slice_mode = config.slice_mode
self.max_slice_nums = config.max_slice_nums
self.mm_use_im_start_end = config.mm_use_im_start_end
drop_vision_last_layer = config.drop_vision_last_layer
# should assert vpm_config is SiglipVisionConfig
vpm = SiglipVisionModel(vpm_config).vision_model
if drop_vision_last_layer: # drop last vision layer
vpm.encoder.layers = nn.ModuleList(vpm.encoder.layers[:-1])
self.vpm = vpm
# should assert llm_config is minicpmconfig
self.llm = MiniCPMForCausalLM(llm_config)
embed_dim = llm_config.hidden_size
self.resampler = Resampler(
num_queries=config.query_num,
embed_dim=embed_dim,
num_heads=embed_dim // 128,
kv_dim=vpm_config.hidden_size,
adaptive=adaptive
)
return
def vpm_forward(self, data):
if 'vision_hidden_states' not in data:
dtype = self.vpm.embeddings.position_embedding.weight.dtype
device = self.vpm.embeddings.position_embedding.weight.device
pixel_values_list = data['pixel_values']
tgt_sizes = data['tgt_sizes']
vision_hidden_states = []
all_pixel_values = []
img_cnt = []
for pixel_values in pixel_values_list:
img_cnt.append(len(pixel_values))
all_pixel_values.extend([i.flatten(end_dim=1).permute(1, 0) for i in pixel_values]) # 42 * L
# exist image
if all_pixel_values:
tgt_sizes = torch.vstack(tgt_sizes).type(torch.int32)
max_patches = torch.max(tgt_sizes[:, 0] * tgt_sizes[:, 1])
all_pixel_values = torch.nn.utils.rnn.pad_sequence(all_pixel_values, batch_first=True, padding_value=0.0)
all_pixel_values = all_pixel_values.to(device) # here we finally could put `all_pixel_values` to device.
B, L, _ = all_pixel_values.shape
all_pixel_values = all_pixel_values.permute(0, 2, 1).reshape(B, 3, -1, L) # B, 3, 14, L
patch_attn_mask = torch.zeros((B, 1, max_patches), dtype=torch.bool, device=device)
for i in range(B):
patch_attn_mask[i, :tgt_sizes[i][0] * tgt_sizes[i][1]] = True
vision_embedding = self.vpm(all_pixel_values.type(dtype), patch_attention_mask=patch_attn_mask).last_hidden_state
vision_embedding = self.resampler(vision_embedding, tgt_sizes)
start = 0
for pixel_values in pixel_values_list:
img_cnt = len(pixel_values)
if img_cnt > 0:
vision_hidden_states.append(vision_embedding[start: start + img_cnt])
start += img_cnt
else:
vision_hidden_states.append([])
else: # no image
if self.training:
dummy_image = torch.zeros(
(1, 3, 224, 224),
device=device, dtype=dtype
)
# 这是一个 dummy feature
tgt_sizes = torch.Tensor([[(224 // self.patch_size), math.ceil(224 / self.patch_size)]]).type(torch.int32)
dummy_feature = self.resampler(self.vpm(dummy_image).last_hidden_state, tgt_sizes)
else:
dummy_feature = []
for _ in range(len(pixel_values_list)):
vision_hidden_states.append(dummy_feature)
else:
vision_hidden_states = data['vision_hidden_states']
if hasattr(self.llm.config, 'scale_emb'):
vllm_embedding = self.llm.model.embed_tokens(data['input_ids']) * self.llm.config.scale_emb
else:
vllm_embedding = self.llm.model.embed_tokens(data['input_ids'])
vision_hidden_states = [i.type(vllm_embedding.dtype) if isinstance(
i, torch.Tensor) else i for i in vision_hidden_states]
bs = len(data['input_ids'])
for i in range(bs):
cur_vs_hs = vision_hidden_states[i]
if len(cur_vs_hs) > 0:
cur_vllm_emb = vllm_embedding[i]
cur_image_bound = data['image_bound'][i]
if len(cur_image_bound) > 0:
image_indices = torch.stack(
[torch.arange(r[0], r[1], dtype=torch.long) for r in cur_image_bound]
).to(vllm_embedding.device)
cur_vllm_emb.scatter_(
0,
image_indices.view(-1, 1).repeat(1, cur_vllm_emb.shape[-1]),
cur_vs_hs.view(-1, cur_vs_hs.shape[-1])
)
return vllm_embedding, vision_hidden_states
def forward(self, data, **kwargs):
vllm_embedding, vision_hidden_states = self.vpm_forward(data)
output = self.llm(
inputs_embeds=vllm_embedding,
attention_mask=data["attention_mask"],
return_dict=True
)
return CausalVLMOutput(
logits=output.logits,
hidden_states=output.hidden_states,
vision_hidden_states=vision_hidden_states
)
def generate(self, data, **kwargs):
vllm_embedding, vision_hidden_states = self.vpm_forward(data)
# position_ids = torch.arange(data["input_ids"].size(1), dtype=torch.long).to(data["input_ids"].device)
# position_ids = position_ids.unsqueeze(0).expand_as(data["input_ids"])
# 使用attention_mask将填充位置的position_ids设置为0
# position_ids = position_ids * data["attention_mask"]
output = self.llm.generate(
inputs_embeds=vllm_embedding,
# position_ids=position_ids,
attention_mask=data["attention_mask"],
**kwargs
)
return output
|