File size: 19,483 Bytes
fb6aea8 b8ab624 fb6aea8 b8ab624 fb6aea8 b8ab624 fb6aea8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 |
import math
from typing import List, Optional
import timm
import torch
import torch.nn.functional as F
from PIL import Image
from timm.data import IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
from torchvision import transforms
from transformers import LlamaTokenizer
from transformers import BatchEncoding # note that, MiniCPMV do padding during forward, not before forward
from transformers.utils import ModelOutput
from typing import Optional, Tuple
from dataclasses import dataclass
from .configuration_minicpm import MiniCPMVConfig
from .modeling_minicpm import MiniCPMForCausalLM, MiniCPMPreTrainedModel
from .resampler import Resampler
# for faster batch inference
from concurrent.futures import ThreadPoolExecutor
class MiniCPMVPreTrainedModel(MiniCPMPreTrainedModel):
config_class = MiniCPMVConfig
class MiniCPMV(MiniCPMVPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.llm = MiniCPMForCausalLM(config)
self.vpm = self.init_vision_module()
self.vision_dim = self.vpm.embed_dim
self.embed_dim = self.llm.config.hidden_size
self.resampler = self.init_resampler(self.embed_dim, self.vision_dim)
self.transform = self.init_transform()
def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs):
print(gradient_checkpointing_kwargs)
print(f"MiniCPMV.gradient_checkpointing enbale called: {gradient_checkpointing_kwargs}")
self.llm.gradient_checkpointing_enable(gradient_checkpointing_kwargs=gradient_checkpointing_kwargs)
print("self.llm.gradient_checkpointing_enable ... OK")
self.vpm.set_grad_checkpointing(enable=True)
print("self.vpm.gradient_checkpointing_enable ... OK")
return
def init_vision_module(self):
model = timm.create_model(
self.config.vision_encoder,
pretrained=False,
num_classes=0,
dynamic_img_size=True,
dynamic_img_pad=True
)
if isinstance(model, timm.models.VisionTransformer):
if model.attn_pool is not None:
model.attn_pool = torch.nn.Identity()
if self.config.drop_vision_last_layer:
model.blocks = model.blocks[:-1]
return model
def init_resampler(self, embed_dim, vision_dim):
return Resampler(
grid_size=int(math.sqrt(self.config.query_num)),
embed_dim=embed_dim,
num_heads=embed_dim // 128,
kv_dim=vision_dim,
adaptive=True
)
def init_transform(self):
return transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD
),
]
)
# Vision encoder turn raw pixel into visual tokens
def get_vision_embedding(self, pixel_values):
res = []
dtype = self.vpm.pos_embed.data.dtype
# first slice
H, W = pixel_values[0].shape[-2:]
tgt_size = (
math.ceil(H / self.vpm.patch_embed.patch_size[0]), math.ceil(W / self.vpm.patch_embed.patch_size[0])
)
vision_embedding = self.vpm.forward_features(pixel_values[0].unsqueeze(0).type(dtype))
res.append(self.resampler(vision_embedding, tgt_size))
# remaining slices as a batch
if len(pixel_values) > 1:
H, W = pixel_values[1].shape[-2:]
tgt_size = (
math.ceil(H / self.vpm.patch_embed.patch_size[0]), math.ceil(W / self.vpm.patch_embed.patch_size[0])
)
vision_embedding = self.vpm.forward_features(torch.stack(pixel_values[1:], dim=0).type(dtype))
res.append(self.resampler(vision_embedding, tgt_size))
return torch.vstack(res)
# input: input_ids(includes image placeholder), pixel_values, image_bound,output: unified inputs_embeds
def get_vllm_embedding(self, data):
if "vision_hidden_states" not in data:
pixel_values_list = data["pixel_values"]
vision_hidden_states = []
for pixel_values in pixel_values_list:
if len(pixel_values) > 0:
vision_hidden_states.append(self.get_vision_embedding(pixel_values))
else:
vision_hidden_states.append([])
else:
vision_hidden_states = data["vision_hidden_states"]
vllm_embedding = (
self.llm.model.embed_tokens(data["input_ids"]) * self.llm.config.scale_emb
)
vision_hidden_states = [
i.type(vllm_embedding.dtype) if isinstance(i, torch.Tensor) else i
for i in vision_hidden_states
]
bs = len(data["input_ids"])
for i in range(bs):
cur_vs_hs = vision_hidden_states[i]
if len(cur_vs_hs) > 0:
cur_vllm_emb = vllm_embedding[i]
cur_image_bound = data["image_bound"][i]
if len(cur_image_bound) > 0:
image_indices = torch.stack(
[
torch.arange(r[0], r[1], dtype=torch.long)
for r in cur_image_bound
]
).to(vllm_embedding.device)
cur_vllm_emb.scatter_(
0,
image_indices.view(-1, 1).repeat(1, cur_vllm_emb.shape[-1]),
cur_vs_hs.view(-1, cur_vs_hs.shape[-1]),
)
elif self.training:
cur_vllm_emb += cur_vs_hs[0].mean() * 0
return vllm_embedding, vision_hidden_states
def _convert_to_tensors(
self, tokenizer, input_str, max_inp_length: Optional[int] = None):
if tokenizer.add_bos_token:
input_ids = tokenizer.encode(input_str)
else:
input_ids = [tokenizer.bos_id] + tokenizer.encode(input_str)
if max_inp_length is not None:
input_ids = input_ids[:max_inp_length]
input_ids = torch.tensor(input_ids, dtype=torch.int32)
image_start_tokens = torch.where(input_ids == tokenizer.im_start_id)[0]
# 跳过 im_start
image_start_tokens += 1
image_end_tokens = torch.where(input_ids == tokenizer.im_end_id)[0]
valid_image_nums = max(len(image_start_tokens), len(image_end_tokens))
image_bound = torch.hstack(
[
image_start_tokens[:valid_image_nums].unsqueeze(-1),
image_end_tokens[:valid_image_nums].unsqueeze(-1),
]
)
model_input = {}
model_input["input_ids"] = input_ids.unsqueeze(0).to(self.device)
model_input["image_bound"] = image_bound
return model_input
def _process_list( # pad input tensors
self, tokenizer, data_list: List[str], max_inp_length: Optional[int] = None, padding_side: str = "left"
):
# pad_keys = ["input_ids"]
input_tensors = []
for data in data_list:
input_tensors.append(
self._convert_to_tensors(tokenizer, data, max_inp_length)
)
padded = pad([i["input_ids"] for i in input_tensors], padding_side=padding_side)
padded = padded.to(self.device)
padded["image_bound"] = [i["image_bound"] for i in input_tensors]
return padded
def slice_image(self, image):
return slice_image(
image,
self.config.max_slice_nums,
self.config.scale_resolution,
self.config.patch_size,
)
def get_slice_image_placeholder(self, image, tokenizer):
image_placeholder = (
tokenizer.im_start
+ tokenizer.unk_token * self.config.query_num
+ tokenizer.im_end
)
slice_images = []
source_image, patches, best_grid = slice_image(
image,
self.config.max_slice_nums,
self.config.scale_resolution,
self.config.patch_size,
)
slice_images.append(source_image)
final_placeholder = image_placeholder
if len(patches) > 0:
for i in range(len(patches)):
for j in range(len(patches[0])):
slice_images.append(patches[i][j])
final_placeholder += get_grid_placeholder(
tokenizer, best_grid, self.config.query_num
)
return slice_images, final_placeholder
def pad(orig_items, max_length=None, padding_value=0, padding_side="left"):
"""
Args:
orig_items: a list of input_ids, each input_ids should be [1, length_i]
"""
assert isinstance(orig_items, list)
assert isinstance(orig_items[0], torch.Tensor)
items = [t.squeeze() for t in orig_items]
batch_size = len(items)
shape = items[0].shape
dim = len(shape)
assert dim == 1, "This pad function only expect B*Tensor([seq_len]) input." # Assuming 1D tensors for simplicity
if max_length is None:
max_length = max(item.shape[0] for item in items)
tensor = torch.full((batch_size, max_length), padding_value, dtype=items[0].dtype)
attention_mask = torch.zeros((batch_size, max_length), dtype=torch.int8)
for i, item in enumerate(items):
length = item.shape[0]
if padding_side == "left":
tensor[i, -length:] = item
attention_mask[i, -length:] = 1
else:
tensor[i, :length] = item
attention_mask[i, :length] = 1
return_dict = {
"input_ids": tensor,
"attention_mask": attention_mask,
}
return BatchEncoding(return_dict)
def slice_image(
image, max_slice_nums=9, scale_resolution=448, patch_size=14, never_split=False):
original_size = image.size
original_width, original_height = original_size
log_ratio = math.log(original_width / original_height)
ratio = original_width * original_height / (scale_resolution * scale_resolution)
multiple = min(math.ceil(ratio), max_slice_nums)
source_image = None
best_grid = None
patches = []
if multiple <= 1 or never_split:
# dont need to slice, upsample
best_size = find_best_resize(
original_size, scale_resolution, patch_size, allow_upscale=True
)
source_image = image.resize(best_size, Image.Resampling.BICUBIC)
else:
candidate_split_grids_nums = []
for i in [multiple - 1, multiple, multiple + 1]:
if i == 1 or i > max_slice_nums:
continue
candidate_split_grids_nums.append(i)
# source image, down-sampling and ensure divided by patch_size
best_resize = find_best_resize(original_size, scale_resolution, patch_size)
source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
candidate_grids = []
# find best grid
for split_grids_nums in candidate_split_grids_nums:
m = 1
while m <= split_grids_nums:
if split_grids_nums % m == 0:
candidate_grids.append([m, split_grids_nums // m])
m += 1
best_grid = [1, 1]
min_error = float("inf")
for grid in candidate_grids:
error = abs(log_ratio - math.log(grid[0] / grid[1]))
if error < min_error:
best_grid = grid
min_error = error
refine_size = get_refine_size(
original_size, best_grid, scale_resolution, patch_size, allow_upscale=True
)
refine_image = image.resize(refine_size, Image.Resampling.BICUBIC)
patches = split_to_patches(refine_image, best_grid)
return source_image, patches, best_grid
def ensure_divide(length, patch_size):
return max(round(length / patch_size) * patch_size, patch_size)
def find_best_resize(original_size, scale_resolution, patch_size, allow_upscale=False):
width, height = original_size
if (width * height > scale_resolution * scale_resolution) or allow_upscale:
r = width / height
height = int(scale_resolution / math.sqrt(r))
width = int(height * r)
best_width = ensure_divide(width, patch_size)
best_height = ensure_divide(height, patch_size)
return (best_width, best_height)
def get_refine_size(
original_size, grid, scale_resolution, patch_size, allow_upscale=False):
width, height = original_size
grid_x, grid_y = grid
refine_width = ensure_divide(width, grid_x)
refine_height = ensure_divide(height, grid_y)
grid_width = refine_width / grid_x
grid_height = refine_height / grid_y
best_grid_size = find_best_resize(
(grid_width, grid_height),
scale_resolution,
patch_size,
allow_upscale=allow_upscale,
)
refine_size = (best_grid_size[0] * grid_x, best_grid_size[1] * grid_y)
return refine_size
def split_to_patches(image, grid):
patches = []
width, height = image.size
grid_x = int(width / grid[0])
grid_y = int(height / grid[1])
for i in range(0, height, grid_y):
images = []
for j in range(0, width, grid_x):
box = (j, i, j + grid_x, i + grid_y)
patch = image.crop(box)
images.append(patch)
patches.append(images)
return patches
def get_grid_placeholder(tokenizer, grid, query_num):
image_placeholder = (
tokenizer.im_start + tokenizer.unk_token * query_num + tokenizer.im_end
)
cols = grid[0]
rows = grid[1]
slices = []
for i in range(rows):
lines = []
for j in range(cols):
lines.append(image_placeholder)
slices.append("".join(lines))
slice_placeholder = tokenizer.slice_start + "\n".join(slices) + tokenizer.slice_end
return slice_placeholder
def transform_image_mp(img_list, transform, device, max_workers=None):
pixel_values = []
with ThreadPoolExecutor(max_workers=max_workers) as executor:
for img_batch in img_list:
img_inps = list(executor.map(transform, img_batch))
for i in range(len(img_inps)):
img_inps[i] = img_inps[i].to(device)
pixel_values.append(img_inps if img_inps else [])
return pixel_values
@dataclass
class BaseModelOutputWithAttentionMask(ModelOutput):
last_hidden_state: torch.FloatTensor = None
attention_mask: Optional[torch.Tensor] = None
class MiniCPMVEmbedding(MiniCPMV): # MiniCPMVEmbedding -> MiniCPMV -> Ultimately a CausalLM -> last_hidden_state for information retrieval
def fused_tokenize(
self,
data_list=None, # List[str]
img_list=None, # List[List[PIL.Image]]
tokenizer=None,
max_inp_length: Optional[int] = None,
vision_hidden_states=None, # default None
return_vision_hidden_states=False,
**kwargs):
assert data_list is not None
bs = len(data_list)
if img_list == None:
img_list = [[] for i in range(bs)]
assert bs == len(img_list)
model_inputs = self._process_list(tokenizer, data_list, max_inp_length, padding_side="left")
if vision_hidden_states is None:
pixel_values = transform_image_mp(img_list, self.transform, self.device, max_workers=8)
model_inputs["pixel_values"] = pixel_values
else:
model_inputs["vision_hidden_states"] = vision_hidden_states
return model_inputs
def prepare_context(self, inputs, tokenizer):
text_, image_ = inputs
if not isinstance(text_, str):
raise NotImplementedError(f"chatml format expected, expect outmost type to be str but got {type(text_)}")
# 1.add text
content = text_
# 2. add image
if image_:
if self.config.slice_mode:
images, final_placeholder = self.get_slice_image_placeholder(
image_, tokenizer
) # crop one image into multiple sub images -> List[Image]
content = final_placeholder + "\n" + content
else:
images = [image_] # only keep one image without cropping -> List[Image]
content = (
tokenizer.im_start
+ tokenizer.unk_token * self.config.query_num
+ tokenizer.im_end
+ "\n"
+ content
)
else:
images = []
return content, images
def forward(
self,
text, # List[str] Batch
image, # List[ PIL.Image ] Batch, one image for each data
tokenizer,
max_inp_length=2048,
**kwargs):
processed_image = []
processed_text = []
with ThreadPoolExecutor(max_workers=8) as executor:
contexts = list(executor.map(lambda inputs: self.prepare_context(inputs, tokenizer), zip(text, image)))
for context in contexts:
content_, image_ = context
processed_text.append(content_)
processed_image.append(image_)
model_inputs = self.fused_tokenize(
data_list=processed_text, # List[str]
img_list=processed_image, # List[List[PIL.Image]]
tokenizer=tokenizer,
max_inp_length=max_inp_length
)
# this is vision encoder forward.
model_inputs["inputs_embeds"], vision_hidden_states = self.get_vllm_embedding(model_inputs)
vlm_outputs = self.llm.model(
input_ids=None, # because image and text have been merged into model_inputs["inputs_embeds"] here, we don't give input_ids
position_ids=None,
inputs_embeds=model_inputs["inputs_embeds"],
attention_mask=model_inputs["attention_mask"],
return_dict=True
)
last_hidden_state = vlm_outputs.last_hidden_state
last_hidden_state_normalized = F.normalize(last_hidden_state, dim=1)
return BaseModelOutputWithAttentionMask(
last_hidden_state=last_hidden_state_normalized,
attention_mask=model_inputs.attention_mask
)
class LlamaTokenizerWrapper(LlamaTokenizer):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.im_start = "<image>"
self.im_end = "</image>"
self.ref_start = "<ref>"
self.ref_end = "</ref>"
self.box_start = "<box>"
self.box_end = "</box>"
self.quad_start = "<quad>"
self.quad_end = "</quad>"
self.point_start = "<point>"
self.point_end = "</point>"
self.slice_start = "<slice>"
self.slice_end = "</slice>"
@property
def eos_id(self):
return self.sp_model.eos_id()
@property
def bos_id(self):
return self.sp_model.bos_id()
@property
def unk_id(self):
return self.sp_model.unk_id()
@property
def im_start_id(self):
return self._convert_token_to_id(self.im_start)
@property
def im_end_id(self):
return self._convert_token_to_id(self.im_end)
|