File size: 18,856 Bytes
34296dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
import os
import os.path as osp
import re
import sys
import yaml
import shutil
import numpy as np
import torch
import click
import warnings
warnings.simplefilter('ignore')

# load packages
import random
import yaml
from munch import Munch
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torchaudio
import librosa

from models import *
from meldataset import build_dataloader
from utils import *
from losses import *
from optimizers import build_optimizer
import time

from accelerate import Accelerator
from accelerate.utils import LoggerType
from accelerate import DistributedDataParallelKwargs

from torch.utils.tensorboard import SummaryWriter

import logging
from accelerate.logging import get_logger
logger = get_logger(__name__, log_level="DEBUG")

@click.command()
@click.option('-p', '--config_path', default='Configs/config.yml', type=str)
def main(config_path):
    config = yaml.safe_load(open(config_path))
    
    save_iter = 10500

    log_dir = config['log_dir']
    if not osp.exists(log_dir): os.makedirs(log_dir, exist_ok=True)
    shutil.copy(config_path, osp.join(log_dir, osp.basename(config_path)))
    ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
    accelerator = Accelerator(project_dir=log_dir, split_batches=True, kwargs_handlers=[ddp_kwargs], mixed_precision='bf16')    
    if accelerator.is_main_process:
        writer = SummaryWriter(log_dir + "/tensorboard")

    # write logs
    file_handler = logging.FileHandler(osp.join(log_dir, 'train.log'))
    file_handler.setLevel(logging.DEBUG)
    file_handler.setFormatter(logging.Formatter('%(levelname)s:%(asctime)s: %(message)s'))
    logger.logger.addHandler(file_handler)
    
    batch_size = config.get('batch_size', 10)
    device = accelerator.device
    
    epochs = config.get('epochs_1st', 200)
    save_freq = config.get('save_freq', 2)
    log_interval = config.get('log_interval', 10)
    saving_epoch = config.get('save_freq', 2)
    
    data_params = config.get('data_params', None)
    sr = config['preprocess_params'].get('sr', 24000)
    train_path = data_params['train_data']
    val_path = data_params['val_data']
    root_path = data_params['root_path']
    min_length = data_params['min_length']
    OOD_data = data_params['OOD_data']
    
    max_len = config.get('max_len', 200)
    
    # load data
    train_list, val_list = get_data_path_list(train_path, val_path)

    train_dataloader = build_dataloader(train_list,
                                        root_path,
                                        OOD_data=OOD_data,
                                        min_length=min_length,
                                        batch_size=batch_size,
                                        num_workers=2,
                                        dataset_config={},
                                        device=device)

    val_dataloader = build_dataloader(val_list,
                                      root_path,
                                      OOD_data=OOD_data,
                                      min_length=min_length,
                                      batch_size=batch_size,
                                      validation=True,
                                      num_workers=0,
                                      device=device,
                                      dataset_config={})
    
    with accelerator.main_process_first():
        # load pretrained ASR model
        ASR_config = config.get('ASR_config', False)
        ASR_path = config.get('ASR_path', False)
        text_aligner = load_ASR_models(ASR_path, ASR_config)

        # load pretrained F0 model
        F0_path = config.get('F0_path', False)
        pitch_extractor = load_F0_models(F0_path)

        # load BERT model
        from Utils.PLBERT.util import load_plbert
        BERT_path = config.get('PLBERT_dir', False)
        plbert = load_plbert(BERT_path)

    scheduler_params = {
        "max_lr": float(config['optimizer_params'].get('lr', 1e-4)),
        "pct_start": float(config['optimizer_params'].get('pct_start', 0.0)),
        "epochs": epochs,
        "steps_per_epoch": len(train_dataloader),
    }
    
    model_params = recursive_munch(config['model_params'])
    multispeaker = model_params.multispeaker
    model = build_model(model_params, text_aligner, pitch_extractor, plbert)

    best_loss = float('inf')  # best test loss
    loss_train_record = list([])
    loss_test_record = list([])

    loss_params = Munch(config['loss_params'])
    TMA_epoch = loss_params.TMA_epoch
    
    for k in model:
        model[k] = accelerator.prepare(model[k])
    
    train_dataloader, val_dataloader = accelerator.prepare(
        train_dataloader, val_dataloader
    )
    
    _ = [model[key].to(device) for key in model]

    # initialize optimizers after preparing models for compatibility with FSDP
    optimizer = build_optimizer({key: model[key].parameters() for key in model},
                                  scheduler_params_dict= {key: scheduler_params.copy() for key in model},
                               lr=float(config['optimizer_params'].get('lr', 1e-4)))
    
    for k, v in optimizer.optimizers.items():
        optimizer.optimizers[k] = accelerator.prepare(optimizer.optimizers[k])
        optimizer.schedulers[k] = accelerator.prepare(optimizer.schedulers[k])
    
    with accelerator.main_process_first():
        if config.get('pretrained_model', '') != '':
            model, optimizer, start_epoch, iters = load_checkpoint(model,  optimizer, config['pretrained_model'],
                                        load_only_params=config.get('load_only_params', True))
        else:
            start_epoch = 0
            iters = 0
    
    # in case not distributed
    try:
        n_down = model.text_aligner.module.n_down
    except:
        n_down = model.text_aligner.n_down
    
    # wrapped losses for compatibility with mixed precision
    stft_loss = MultiResolutionSTFTLoss().to(device)
    gl = GeneratorLoss(model.mpd, model.msd).to(device)
    dl = DiscriminatorLoss(model.mpd, model.msd).to(device)
    wl = WavLMLoss(model_params.slm.model, 
                   model.wd, 
                   sr, 
                   model_params.slm.sr).to(device)

    for epoch in range(start_epoch, epochs):
        running_loss = 0
        start_time = time.time()

        _ = [model[key].train() for key in model]

        for i, batch in enumerate(train_dataloader):
            waves = batch[0]
            batch = [b.to(device) for b in batch[1:]]
            texts, input_lengths, _, _, mels, mel_input_length, _ = batch
            
            with torch.no_grad():
                mask = length_to_mask(mel_input_length // (2 ** n_down)).to('cuda')
                text_mask = length_to_mask(input_lengths).to(texts.device)

            ppgs, s2s_pred, s2s_attn = model.text_aligner(mels, mask, texts)

            s2s_attn = s2s_attn.transpose(-1, -2)
            s2s_attn = s2s_attn[..., 1:]
            s2s_attn = s2s_attn.transpose(-1, -2)

            with torch.no_grad():
                attn_mask = (~mask).unsqueeze(-1).expand(mask.shape[0], mask.shape[1], text_mask.shape[-1]).float().transpose(-1, -2)
                attn_mask = attn_mask.float() * (~text_mask).unsqueeze(-1).expand(text_mask.shape[0], text_mask.shape[1], mask.shape[-1]).float()
                attn_mask = (attn_mask < 1)

            s2s_attn.masked_fill_(attn_mask, 0.0)
                        
            with torch.no_grad():
                mask_ST = mask_from_lens(s2s_attn, input_lengths, mel_input_length // (2 ** n_down))
                s2s_attn_mono = maximum_path(s2s_attn, mask_ST)

            # encode
            t_en = model.text_encoder(texts, input_lengths, text_mask)

            # 50% of chance of using monotonic version
            if bool(random.getrandbits(1)):
                asr = (t_en @ s2s_attn)
            else:
                asr = (t_en @ s2s_attn_mono)
    
            # get clips
            mel_input_length_all = accelerator.gather(mel_input_length) # for balanced load
            mel_len = min([int(mel_input_length_all.min().item() / 2 - 1), max_len // 2])
            mel_len_st = int(mel_input_length.min().item() / 2 - 1)
        
            en = []
            gt = []
            wav = []
            st = []
            
            for bib in range(len(mel_input_length)):
                mel_length = int(mel_input_length[bib].item() / 2)

                random_start = np.random.randint(0, mel_length - mel_len)
                en.append(asr[bib, :, random_start:random_start+mel_len])
                gt.append(mels[bib, :, (random_start * 2):((random_start+mel_len) * 2)])

                y = waves[bib][(random_start * 2) * 300:((random_start+mel_len) * 2) * 300]
                wav.append(torch.from_numpy(y).to(device))
                
                # style reference (better to be different from the GT)
                random_start = np.random.randint(0, mel_length - mel_len_st)
                st.append(mels[bib, :, (random_start * 2):((random_start+mel_len_st) * 2)])

            en = torch.stack(en)
            gt = torch.stack(gt).detach()
            st = torch.stack(st).detach()

            wav = torch.stack(wav).float().detach()

            # clip too short to be used by the style encoder
            if gt.shape[-1] < 80:
                continue
                
            with torch.no_grad():    
                real_norm = log_norm(gt.unsqueeze(1)).squeeze(1).detach()
                F0_real, _, _ = model.pitch_extractor(gt.unsqueeze(1))
                
            s = model.style_encoder(st.unsqueeze(1) if multispeaker else gt.unsqueeze(1))
            
            y_rec = model.decoder(en, F0_real, real_norm, s)
            
            # discriminator loss
            
            if epoch >= TMA_epoch:
                optimizer.zero_grad()
                d_loss = dl(wav.detach().unsqueeze(1).float(), y_rec.detach()).mean()
                accelerator.backward(d_loss)
                optimizer.step('msd')
                optimizer.step('mpd')
            else:
                d_loss = 0

            # generator loss
            optimizer.zero_grad()
            loss_mel = stft_loss(y_rec.squeeze(), wav.detach())
            
            if epoch >= TMA_epoch: # start TMA training
                loss_s2s = 0
                for _s2s_pred, _text_input, _text_length in zip(s2s_pred, texts, input_lengths):
                    loss_s2s += F.cross_entropy(_s2s_pred[:_text_length], _text_input[:_text_length])
                loss_s2s /= texts.size(0)

                loss_mono = F.l1_loss(s2s_attn, s2s_attn_mono) * 10
                    
                loss_gen_all = gl(wav.detach().unsqueeze(1).float(), y_rec).mean()
                loss_slm = wl(wav.detach(), y_rec).mean()
                
                g_loss = loss_params.lambda_mel * loss_mel + \
                loss_params.lambda_mono * loss_mono + \
                loss_params.lambda_s2s * loss_s2s + \
                loss_params.lambda_gen * loss_gen_all + \
                loss_params.lambda_slm * loss_slm

            else:
                loss_s2s = 0
                loss_mono = 0
                loss_gen_all = 0
                loss_slm = 0
                g_loss = loss_mel
            
            running_loss += accelerator.gather(loss_mel).mean().item()

            accelerator.backward(g_loss)
            
            optimizer.step('text_encoder')
            optimizer.step('style_encoder')
            optimizer.step('decoder')
            
            if epoch >= TMA_epoch: 
                optimizer.step('text_aligner')
                optimizer.step('pitch_extractor')
            
            iters = iters + 1
            
            if (i+1)%log_interval == 0 and accelerator.is_main_process:
                log_print ('Epoch [%d/%d], Step [%d/%d], Mel Loss: %.5f, Gen Loss: %.5f, Disc Loss: %.5f, Mono Loss: %.5f, S2S Loss: %.5f, SLM Loss: %.5f'
                        %(epoch+1, epochs, i+1, len(train_list)//batch_size, running_loss / log_interval, loss_gen_all, d_loss, loss_mono, loss_s2s, loss_slm), logger)
                
                writer.add_scalar('train/mel_loss', running_loss / log_interval, iters)
                writer.add_scalar('train/gen_loss', loss_gen_all, iters)
                writer.add_scalar('train/d_loss', d_loss, iters)
                writer.add_scalar('train/mono_loss', loss_mono, iters)
                writer.add_scalar('train/s2s_loss', loss_s2s, iters)
                writer.add_scalar('train/slm_loss', loss_slm, iters)

                running_loss = 0
                
                print('Time elasped:', time.time()-start_time)
                
            if (i+1)%save_iter == 0 and accelerator.is_main_process:

                print(f'Saving on step {epoch*len(train_dataloader)+i}...')
                state = {
                    'net':  {key: model[key].state_dict() for key in model}, 
                    'optimizer': optimizer.state_dict(),
                    'iters': iters,
                    'epoch': epoch,
                }
                save_path = osp.join(log_dir, f'2nd_phase_{epoch*len(train_dataloader)+i}.pth')
                torch.save(state, save_path)                        
                                
        loss_test = 0

        _ = [model[key].eval() for key in model]

        with torch.no_grad():
            iters_test = 0
            for batch_idx, batch in enumerate(val_dataloader):
                optimizer.zero_grad()

                waves = batch[0]
                batch = [b.to(device) for b in batch[1:]]
                texts, input_lengths, _, _, mels, mel_input_length, _ = batch

                with torch.no_grad():
                    mask = length_to_mask(mel_input_length // (2 ** n_down)).to('cuda')
                    ppgs, s2s_pred, s2s_attn = model.text_aligner(mels, mask, texts)

                    s2s_attn = s2s_attn.transpose(-1, -2)
                    s2s_attn = s2s_attn[..., 1:]
                    s2s_attn = s2s_attn.transpose(-1, -2)

                    text_mask = length_to_mask(input_lengths).to(texts.device)
                    attn_mask = (~mask).unsqueeze(-1).expand(mask.shape[0], mask.shape[1], text_mask.shape[-1]).float().transpose(-1, -2)
                    attn_mask = attn_mask.float() * (~text_mask).unsqueeze(-1).expand(text_mask.shape[0], text_mask.shape[1], mask.shape[-1]).float()
                    attn_mask = (attn_mask < 1)
                    s2s_attn.masked_fill_(attn_mask, 0.0)

                # encode
                t_en = model.text_encoder(texts, input_lengths, text_mask)
                
                asr = (t_en @ s2s_attn)

                # get clips
                mel_input_length_all = accelerator.gather(mel_input_length) # for balanced load
                mel_len = min([int(mel_input_length.min().item() / 2 - 1), max_len // 2])
                
                en = []
                gt = []
                wav = []
                for bib in range(len(mel_input_length)):
                    mel_length = int(mel_input_length[bib].item() / 2)

                    random_start = np.random.randint(0, mel_length - mel_len)
                    en.append(asr[bib, :, random_start:random_start+mel_len])
                    gt.append(mels[bib, :, (random_start * 2):((random_start+mel_len) * 2)])
                    y = waves[bib][(random_start * 2) * 300:((random_start+mel_len) * 2) * 300]
                    wav.append(torch.from_numpy(y).to('cuda'))

                wav = torch.stack(wav).float().detach()

                en = torch.stack(en)
                gt = torch.stack(gt).detach()

                F0_real, _, F0 = model.pitch_extractor(gt.unsqueeze(1))
                s = model.style_encoder(gt.unsqueeze(1))
                real_norm = log_norm(gt.unsqueeze(1)).squeeze(1)
                y_rec = model.decoder(en, F0_real, real_norm, s)

                loss_mel = stft_loss(y_rec.squeeze(), wav.detach())

                loss_test += accelerator.gather(loss_mel).mean().item()
                iters_test += 1

        if accelerator.is_main_process:
            print('Epochs:', epoch + 1)
            log_print('Validation loss: %.3f' % (loss_test / iters_test) + '\n\n\n\n', logger)
            print('\n\n\n')
            writer.add_scalar('eval/mel_loss', loss_test / iters_test, epoch + 1)
            attn_image = get_image(s2s_attn[0].cpu().numpy().squeeze())
            writer.add_figure('eval/attn', attn_image, epoch)
            
            with torch.no_grad():
                for bib in range(len(asr)):
                    mel_length = int(mel_input_length[bib].item())
                    gt = mels[bib, :, :mel_length].unsqueeze(0)
                    en = asr[bib, :, :mel_length // 2].unsqueeze(0)
                                        
                    F0_real, _, _ = model.pitch_extractor(gt.unsqueeze(1))
                    F0_real = F0_real.unsqueeze(0)
                    s = model.style_encoder(gt.unsqueeze(1))
                    real_norm = log_norm(gt.unsqueeze(1)).squeeze(1)
                    
                    y_rec = model.decoder(en, F0_real, real_norm, s)
                    
                    writer.add_audio('eval/y' + str(bib), y_rec.cpu().numpy().squeeze(), epoch, sample_rate=sr)
                    if epoch == 0:
                        writer.add_audio('gt/y' + str(bib), waves[bib].squeeze(), epoch, sample_rate=sr)
                    
                    if bib >= 15:
                        break

            if epoch % saving_epoch == 0:
                if (loss_test / iters_test) < best_loss:
                    best_loss = loss_test / iters_test
                print('Saving..')
                state = {
                    'net':  {key: model[key].state_dict() for key in model}, 
                    'optimizer': optimizer.state_dict(),
                    'iters': iters,
                    'val_loss': loss_test / iters_test,
                    'epoch': epoch,
                }
                save_path = osp.join(log_dir, 'epoch_1st_%05d.pth' % epoch)
                torch.save(state, save_path)
                                
    if accelerator.is_main_process:
        print('Saving..')
        state = {
            'net':  {key: model[key].state_dict() for key in model}, 
            'optimizer': optimizer.state_dict(),
            'iters': iters,
            'val_loss': loss_test / iters_test,
            'epoch': epoch,
        }
        save_path = osp.join(log_dir, config.get('first_stage_path', 'first_stage.pth'))
        torch.save(state, save_path)

        
    
if __name__=="__main__":
    main()