File size: 8,641 Bytes
85e890c 9bf7f12 85e890c 9bf7f12 85e890c 9bf7f12 85e890c 9bf7f12 85e890c 9bf7f12 85e890c 9bf7f12 85e890c 9bf7f12 85e890c 9bf7f12 85e890c b2819f3 85e890c b2819f3 85e890c 9bf7f12 85e890c 9bf7f12 faa8827 9bf7f12 85e890c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
import matplotlib.pyplot as plt
import numpy as np
import time
from tqdm import tqdm
import os.path as osp
import re
import sys
import yaml
import shutil
from utils import *
from optimizers import build_optimizer
from model import *
from meldataset import build_dataloader
from utils import *
from torch.utils.tensorboard import SummaryWriter
import click
from accelerate import Accelerator
from accelerate.utils import LoggerType
from accelerate import DistributedDataParallelKwargs
import logging
from logging import StreamHandler
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
handler = StreamHandler()
handler.setLevel(logging.DEBUG)
logger.addHandler(handler)
import logging
from accelerate.logging import get_logger
logger = get_logger(__name__, log_level="DEBUG")
# torch.autograd.detect_anomaly(True)
torch.backends.cudnn.benchmark = True
def log_print(message, logger):
logger.info(message)
print(message)
@click.command()
@click.option('-p', '--config_path', default='./Configs/config.yml', type=str)
def main(config_path):
config = yaml.safe_load(open(config_path))
log_dir = config['log_dir']
if not osp.exists(log_dir): os.mkdir(log_dir)
shutil.copy(config_path, osp.join(log_dir, osp.basename(config_path)))
writer = SummaryWriter(log_dir + "/tensorboard")
ddp_kwargs = DistributedDataParallelKwargs()
accelerator = Accelerator(project_dir=log_dir, split_batches=True, kwargs_handlers=[ddp_kwargs])
if accelerator.is_main_process:
writer = SummaryWriter(log_dir + "/tensorboard")
# write logs
file_handler = logging.FileHandler(osp.join(log_dir, 'train.log'))
file_handler.setLevel(logging.DEBUG)
file_handler.setFormatter(logging.Formatter('%(levelname)s:%(asctime)s: %(message)s'))
logger.logger.addHandler(file_handler)
epoch = config.get('epoch', 100)
save_iter = 1
batch_size = config.get('batch_size', 4)
log_interval = 10
device = accelerator.device
train_path = config.get('train_data', None)
val_path = config.get('val_data', None)
epochs = config.get('epochs', 1000)
train_list, val_list = get_data_path_list(train_path, val_path)
train_dataloader = build_dataloader(train_list,
batch_size=batch_size,
num_workers=8,
dataset_config=config.get('dataset_params', {}),
device=device)
val_dataloader = build_dataloader(val_list,
batch_size=batch_size,
validation=True,
num_workers=2,
device=device,
dataset_config=config.get('dataset_params', {}))
aligner = AlignerModel()
forward_sum_loss = ForwardSumLoss()
best_val_loss = float('inf')
scheduler_params = {
"max_lr": float(config['optimizer_params'].get('lr', 5e-4)),
"pct_start": float(config['optimizer_params'].get('pct_start', 0.0)),
"epochs": epochs,
"steps_per_epoch": len(train_dataloader),
}
optimizer, scheduler = build_optimizer(
{"params": aligner.parameters(), "optimizer_params":{}, "scheduler_params": scheduler_params})
aligner, optimizer, train_dataloader, val_dataloader, scheduler = accelerator.prepare(
aligner, optimizer, train_dataloader, val_dataloader, scheduler
)
with accelerator.main_process_first():
if config.get('pretrained_model', '') != '':
model, optimizer, start_epoch, iters = load_checkpoint(model, optimizer, config['pretrained_model'],
load_only_params=config.get('load_only_params', True))
else:
start_epoch = 0
iters = 0
# Training loop
for epoch in range(1, epochs + 1):
aligner.train()
train_losses = []
train_fwd_losses = []
start_time = time.time()
# Training phase
pbar = tqdm(train_dataloader, desc=f"Epoch {epoch}/{epochs} [Train]")
for i, batch in enumerate(pbar):
batch = [b.to(device) for b in batch]
text_input, text_input_length, mel_input, mel_input_length, attn_prior = batch
# Forward pass
attn_soft, attn_logprob = aligner(spec=mel_input,
spec_len=mel_input_length,
text=text_input,
text_len=text_input_length,
attn_prior=attn_prior)
# Calculate loss
loss = forward_sum_loss(attn_logprob=attn_logprob,
in_lens=text_input_length,
out_lens=mel_input_length)
# Backward pass and optimization
optimizer.zero_grad()
accelerator.backward(loss)
# Optional gradient clipping
grad_norm = accelerator.clip_grad_norm_(aligner.parameters(), 5.0)
optimizer.step()
iters = iters + 1
if scheduler is not None:
scheduler.step()
if (i+1)%log_interval == 0 and accelerator.is_main_process:
log_print('Epoch [%d/%d], Step [%d/%d], Forward Sum Loss: %.5f'
%(epoch+1, epochs, i+1, len(train_list)//batch_size, loss), logger)
writer.add_scalar('train/Forward Sum Loss', loss, iters)
# writer.add_scalar('train/d_loss', d_loss, iters)
train_losses.append(loss.item())
train_fwd_losses.append(loss.item())
running_loss = 0
accelerator.print('Time elasped:', time.time()-start_time)
# Calculate average training loss for this epoch
avg_train_loss = sum(train_losses) / len(train_losses)
# Validation phase
aligner.eval()
val_losses = []
with torch.no_grad():
for batch in tqdm(val_dataloader, desc=f"Epoch {epoch}/{epochs} [Val]"):
batch = [b.to(device) for b in batch]
text_input, text_input_length, mel_input, mel_input_length = batch
# Forward pass
attn_soft, attn_logprob = aligner(spec=mel_input,
spec_len=mel_input_length,
text=text_input,
text_len=text_input_length,
attn_prior=None)
# Calculate loss
val_loss = forward_sum_loss(attn_logprob=attn_logprob,
in_lens=text_input_length,
out_lens=mel_input_length)
val_losses.append(val_loss.item())
# Calculate average validation loss
avg_val_loss = sum(val_losses) / len(val_losses)
# Log to TensorBoard
writer.add_scalar('epoch/train_loss', avg_train_loss, epoch)
writer.add_scalar('epoch/val_loss', avg_val_loss, epoch)
# Save checkpoint every N epochs
if (i+1)%save_iter == 0 and accelerator.is_main_process:
print(f'Saving on step {epoch*len(train_dataloader)+i}...')
state = {
'net': {key: aligner[key].state_dict() for key in aligner},
'optimizer': optimizer.state_dict(),
'iters': iters,
'epoch': epoch,
}
save_path = os.path.join(log_dir, 'checkpoints', f'TextAligner_checkpoint_epoch_{epoch}.pt')
torch.save(state, save_path)
# Print summary for this epoch
epoch_time = time.time() - start_time
accelerator.print(f"Epoch {epoch}/{epochs} completed in {epoch_time:.2f}s | "
f"Train Loss: {avg_train_loss:.4f} | Val Loss: {avg_val_loss:.4f}")
# # Plot and save attention matrices for visualization
# if epoch % config.get('plot_every', 10) == 0:
# plot_attention_matrices(aligner, val_dataloader, device,
# os.path.join(log_dir, 'attention_plots', f'epoch_{epoch}'),
# num_samples=4)
writer.close()
if __name__=="__main__":
main() |