File size: 36,230 Bytes
b386992 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\"\"\"\n",
"You can run either this notebook locally (if you have all the dependencies and a GPU) or on Google Colab.\n",
"\n",
"Instructions for setting up Colab are as follows:\n",
"1. Open a new Python 3 notebook.\n",
"2. Import this notebook from GitHub (File -> Upload Notebook -> \"GITHUB\" tab -> copy/paste GitHub URL)\n",
"3. Connect to an instance with a GPU (Runtime -> Change runtime type -> select \"GPU\" for hardware accelerator)\n",
"4. Run this cell to set up dependencies.\n",
"5. Restart the runtime (Runtime -> Restart Runtime) for any upgraded packages to take effect\n",
"\"\"\"\n",
"# If you're using Google Colab and not running locally, run this cell.\n",
"\n",
"NEMO_DIR_PATH = \"NeMo\"\n",
"BRANCH = 'main'\n",
"\n",
"! git clone https://github.com/NVIDIA/NeMo\n",
"%cd NeMo\n",
"! python -m pip install git+https://github.com/NVIDIA/NeMo.git@{BRANCH}#egg=nemo_toolkit[asr]\n",
"%cd .."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# End-to-end Speaker Diarization with Sortformer"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Sortformer: Bridging the Gap between tokens (ASR) and Timestamps (Diarization)\n",
"\n",
"### Speaker Diarization as a part of ASR system\n",
"\n",
"Speaker diarization is all about figuring out who’s speaking when in an audio recording. In the world of automatic speech recognition (ASR), this becomes even more important for handling conversations with multiple speakers. Multispeaker ASR (also called speaker-attributed or multitalker ASR) uses this process to not just transcribe what’s being said, but also to label each part of the transcript with the right speaker.\n",
"\n",
"As ASR technology continues to advance, speaker diarization is increasingly becoming part of the ASR workflow itself. Some systems now handle speaker labeling and transcription at the same time during decoding. This means you don’t just get accurate text—you're also getting insights into who said what, making it more useful for conversational analysis.\n",
"\n",
"### Challenges in Integrating Speaker Diarization and ASR\n",
"\n",
"However, despite significant advancements, integrating speaker diarization and ASR into a unified, seamless system remains a considerable challenge. A key obstacle lies in the need for extensive high-quality, annotated audio data featuring multiple speakers. Acquiring such data is far more complex than collecting single-speaker audio or image datasets. This challenge is particularly pronounced for low-resource languages and domains like healthcare, where strict privacy regulations further constrain data availability.\n",
"\n",
"On top of that, many real-world use cases need these models to handle really long audio files—sometimes hours of conversation at a time. Training on such lengthy data is even more complicated because it’s hard to find or annotate. This creates a big gap between what’s needed and what’s available, making multispeaker ASR one of the toughest nuts to crack in the field of speech technology."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<img src=\"images/intro_comparison.png\" alt=\"Intro Comparison\" style=\"width: 800px;\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"### Sortformer: Simplifying Multispeaker ASR with Arrival Time Sorting\n",
"\n",
"To tackle the complexities of multispeaker automatic speech recognition (ASR), we introduce [*Sortformer*](https://arxiv.org/abs/2409.06656), a new approach that incorporates Sort-Loss and techniques to align timestamps with text tokens. Traditional approaches like permutation-invariant loss (PIL) face challenges when applied in batchable and differentiable computational graphs, especially since token-based objectives struggle to incorporate speaker-specific attributes into PIL-based loss functions.\n",
"\n",
"To address this, we propose an arrival time sorting (ATS) approach. In this method, speaker tokens from ASR outputs and speaker timestamps from diarization outputs are sorted by their arrival times to resolve permutations. This approach allows the multispeaker ASR system to be trained or fine-tuned using token-based cross-entropy loss, eliminating the need for timestamp-based or frame-level objectives with PIL."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<img src=\"images/ats.png\" alt=\"Arrival Time Sort\" style=\"width: 600px;\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"The ATS-based multispeaker ASR system is powered by an end-to-end neural diarizer model, Sortformer, which generates speaker-label timestamps in arrival time order (ATO). To train the neural diarizer to produce sorted outputs, we introduce Sort Loss, a method that creates gradients enabling the Transformer model to learn the ATS mechanism.\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<img src=\"images/main_dataflow.png\" alt=\"Main Dataflow\" style=\"width: 500px;\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Additionally, as shown in the above figure, our diarization system integrates directly with the ASR encoder. By embedding speaker supervision data as speaker kernels into the ASR encoder states, the system seamlessly combines speaker and transcription information. This unified approach improves performance and simplifies the overall architecture."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As a result, our end-to-end multispeaker ASR system is fully or partially trainable with token objectives, allowing both the ASR and speaker diarization modules to be trained or fine-tuned using these objectives. Additionally, during the multispeaker ASR training phase, no specialized loss calculation functions are needed when using Sortformer, as frameworks for standard single-speaker ASR models can be employed. These compatibilities greatly simplify and accelerate the training and fine-tuning process of multispeaker ASR systems. \n",
"\n",
"On top of all these benefits, *Sortformer* can be used as a stand-alone end-to-end speaker diarization model. By training a Sortformer diarizer model especially on high-quality simulated data with accurate time-stamps, you can boost the performance of multi-speaker ASR systems, just by integrating the *Sortformer* model as _*Speaker Supervision*_ model in a computation graph.\n",
"\n",
"In this tutorial, we will walk you through the process of training a Sortformer diarizer model with toy dataset. Before starting, we will introduce the concepts of Sort-Loss calculation and the Hybrid loss technique."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Sort-Loss for *Sortformer* Diarizer"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<img src=\"images/sortformer.png\" alt=\"Sortformer Model with Hybrid Loss\" style=\"width: 500px;\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Sort-Loss is designed to compare the predicted outputs with the true labels, typically sorted in arrival-time order or another relevant metric. The key distinction that *Sortformer* introduces compared to previous end-to-end diarization systems such as [EEND-SA](https://arxiv.org/pdf/1909.06247), [EEND-EDA](https://arxiv.org/abs/2106.10654) lies in the organization of class presence $\\mathbf{\\hat{Y}}$.\n",
"\n",
"The figure below illustrates the difference between Sort-Loss and permutation-invariant loss (PIL) or permutation-free loss.\n",
"\n",
" - PIL is calculated by finding the permutation of the target that minimizes the loss value between the prediction and the target.\n",
"\n",
" - Sort-Loss simply compares the arrival-time-sorted version of speaker activity outputs for both the prediction and the target. Note that sometimes the same ground-truth labels lead to different target matrices for Sort-Loss and PIL.\n",
"\n",
"For example, the figure below shows two identical source target matrices (the two matrices at the top), but the resulting target matrices for Sort-Loss and PIL are different."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<img src=\"images/loss_types.png\" alt=\"PIL model VS SortLoss model\" style=\"width: 1000px;\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In mathmatical terms, Sort-Loss can be expressed as follows:\n",
"\n",
"* **Arrival Time Sorting Function with $\\Psi$ function** \n",
"\n",
" Let $\\Psi$ be a function that determines the first segment's arrival time for a speaker bin:\n",
"$$\n",
" \\Psi\\big(\\mathbf{y}_{k}\\big) = \\min \\{ t' \\mid y_{k, t'} \\neq 0, t' \\in [1, T] \\} = t^{0}_{k},\n",
"$$\n",
" where $t^{0}_{k}$ is the frame index of the first active segment for the $k$-th speaker.\n",
"\n",
"Sortformer aims to generate predictions $\\mathbf{\\hat{y}}_{k}$ for each speaker $k$ such that:\n",
"$$\n",
"\\Psi(\\mathbf{\\hat{y}}_{1}) \\leq \\Psi(\\mathbf{\\hat{y}}_{2}) \\leq \\cdots \\leq \\Psi(\\mathbf{\\hat{y}}_{K}),\n",
"$$\n",
"ensuring the model produces class presence outputs ($\\mathbf{\\hat{Y}}$) sorted by arrival time.\n",
"\n",
"* **Sorting Function $\\eta$ and Sorted Targets $\\mathbf{Y}_{\\eta}$** \n",
"\n",
"\n",
"Let $\\eta$ be the sorting function applied to speaker indices $\\{1, \\dots, K\\}$. The sorted ground-truth matrix $\\mathbf{Y}_{\\eta}$ is defined as:\n",
"$$\n",
"\\eta\\big( \\mathbf{Y} \\big) = \\mathbf{Y}_{\\eta} = \\left(\\mathbf{y}_{\\eta(1)}, \\dots, \\mathbf{y}_{\\eta(K)} \\right).\n",
"$$\n",
"Using $\\Psi$, the following condition holds for the sorted ground-truth labels $\\mathbf{y}_{\\eta(k)}$:\n",
"$$\n",
"\\Psi(\\mathbf{y}_{\\eta(1)}) \\leq \\Psi(\\mathbf{y}_{\\eta(2)}) \\leq \\cdots \\leq \\Psi(\\mathbf{y}_{\\eta(K)}).\n",
"$$\n",
"\n",
"* **Sort Loss ($\\mathcal{L}_{\\text{Sort}}$) Definition** \n",
"\n",
"\n",
"Sort Loss is computed as:\n",
"$$\n",
"\\mathcal{L}_{\\text{Sort}}\\left(\\mathbf{Y}, \\mathbf{P}\\right) = \\mathcal{L}_{\\text{BCE}} \\left(\\mathbf{Y}_{\\eta}, \\mathbf{P}\\right) = \\frac{1}{K} \\sum_{k=1}^{K} \\mathcal{L}_{\\text{BCE}}(\\mathbf{y}_{\\eta(k)}, \\mathbf{q}_k),\n",
"$$\n",
"where:\n",
"\n",
"- $\\mathbf{y}_{\\eta(k)}$: True labels sorted by arrival time using the sorting function $\\eta$.\n",
"- $\\mathbf{q}_k$: Predicted outputs for the $k$-th speaker.\n",
"- $\\mathcal{L}_{\\text{BCE}}(\\mathbf{y}_{\\eta(k)}, \\mathbf{q}_k)$: Binary cross-entropy (BCE) loss for the $k$-th speaker.\n",
"- $K$: Total number of speakers.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now that we learn the concept of Sort Loss and Sortformer, we can now calculate Sort Loss based target matrix and PIL-based target matrix to compare the difference in target-value setting atrix and loss calculation.\n",
"\n",
"- raw target matrix $\\mathbf{Y}$: `raw_targets`\n",
"- prediction matrix $\\mathbf{P}$: `preds`\n",
"- ATS target matrix $\\mathbf{Y}_{\\eta}$: `ats_targets`\n",
"- PIL target matrix $\\mathbf{Y}_{\\text{PIL}}$: `pil_targets`\n",
"\n",
"First, assign the values in the above examples to the respective variables to create tensors."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"\n",
"# Define the binary grid as a Python list\n",
"raw_targets_list = [[\n",
" [0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],\n",
" [0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1],\n",
" [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0],\n",
" [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1]\n",
"],]\n",
"\n",
"preds_list = [[\n",
" [1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0],\n",
" [0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0],\n",
" [0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1],\n",
" [0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1],\n",
"],]\n",
"\n",
"# Convert the list to a PyTorch tensor\n",
"raw_targets = torch.tensor(raw_targets_list).transpose(1,2)\n",
"preds = torch.tensor(preds_list).transpose(1,2)\n",
"\n",
"print(raw_targets.shape)\n",
"print(preds.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, import `get_ats_targets` and `get_pil_targets` functions from the `nemo.collections.asr.parts.utils.asr_multispeaker_utils` module to calculate the ATS and PIL targets. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import itertools\n",
"import torch\n",
"import nemo\n",
"from nemo.collections.asr.parts.utils.asr_multispeaker_utils import get_ats_targets, get_pil_targets\n",
"\n",
"max_num_of_spks = 4 # Number of speakers\n",
"speaker_inds = list(range(max_num_of_spks))\n",
"speaker_permutations = torch.tensor(list(itertools.permutations(speaker_inds))) # Get all permutations\n",
"\n",
"\n",
"ats_target = get_ats_targets(labels=raw_targets.clone(), preds=preds, speaker_permutations=speaker_permutations)\n",
"pil_target = get_pil_targets(labels=raw_targets.clone(), preds=preds, speaker_permutations=speaker_permutations)\n",
"\n",
"print(f\"Predicted tensor:\")\n",
"print(preds[0].T)\n",
"\n",
"print(f\"\\nATS target:\")\n",
"print(ats_target[0].T)\n",
"\n",
"print(f\"\\nPIL target:\")\n",
"print(pil_target[0].T)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can see that ATS target and PIL target are different. Now, you will display the ATS and PIL target matrices to visually compare the difference and also calculate loss values using the BCE loss."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import torch\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"from nemo.collections.asr.losses.bce_loss import BCELoss \n",
"\n",
"bce_loss = BCELoss()\n",
"# reduction='mean', class_normalization=False)\n",
"\n",
"def plot_diarout(preds, title_text, cmap_str):\n",
"\n",
" preds_mat = preds.cpu().numpy().transpose()\n",
" grid_color_p = 'gray'\n",
" LW, FS = 0.5, 10\n",
"\n",
" yticklabels = [\"spk0\", \"spk1\", \"spk2\", \"spk3\"]\n",
" yticks = np.arange(len(yticklabels))\n",
" fig, axs = plt.subplots(1, 1, figsize=(20, 2)) # 1 row, 2 columns for preds and targets\n",
"\n",
" axs.imshow(preds_mat, cmap=cmap_str, interpolation='nearest')\n",
" axs.set_title(title_text, fontsize=FS)\n",
" axs.set_xticks(np.arange(-0.5, preds_mat.shape[1], 1), minor=True)\n",
" axs.set_yticks(np.arange(-0.5, preds_mat.shape[0], 1), minor=True)\n",
" axs.set_yticks(yticks)\n",
" axs.set_yticklabels(yticklabels)\n",
" axs.set_xlabel(f\"80 ms Frames\", fontsize=FS)\n",
" \n",
" # Enable grid\n",
" axs.grid(which='minor', color=grid_color_p, linestyle='-', linewidth=LW)\n",
" axs.tick_params(which=\"minor\", size=0) # Hide minor ticks\n",
" axs.tick_params(which=\"major\", size=5) # Show major ticks\n",
"\n",
" plt.savefig('plot.png', dpi=300) # bbox_inches='tight')\n",
" plt.show()\n",
"\n",
"target_length = torch.tensor([ats_target.shape[1]]) \n",
"print(f\"Target length: {target_length}\")\n",
"plot_diarout(preds[0], title_text='Predictions', cmap_str='viridis')\n",
"\n",
"loss_ats = bce_loss(probs=preds.float(), labels=ats_target.float(), target_lens=target_length)\n",
"print(f\"[ {loss_ats:.4f} ] is the loss from Arrival Time Sort Target: \")\n",
"plot_diarout(ats_target[0], title_text='ATS Target', cmap_str='summer')\n",
"\n",
"loss_pil = bce_loss(probs=preds.float(), labels=pil_target.float(), target_lens=target_length)\n",
"print(f\"[ {loss_pil:.4f} ] is the loss from Permutation Invariant Loss Target\")\n",
"plot_diarout(pil_target[0], title_text='PIL Target', cmap_str='inferno')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"While Sortformer can be trained solely using Sort Loss, there is a limitation: the arrival time estimation is not always accurate. This issue becomes more pronounced as the number of speakers increases during the training session.\n",
"\n",
"Note that Sortformer models can be trained using Sort Loss only, PIL only, or a hybrid loss by adjusting the weight between these two loss components. The hybrid loss $\\mathcal{L}_{\\text{hybrid}}$ can be described as follows:\n",
"\n",
"\n",
"$$\n",
"\\mathcal{L}_{\\text{hybrid}} = \\alpha \\cdot \\mathcal{L}_{\\text{Sort}} + \\beta \\cdot \\mathcal{L}_{\\text{PIL}},\n",
"$$\n",
"\n",
"The weight between ATS and PIL can be adjusted with the variable `model.ats_weight`($\\alpha$) and `model.pil_weight`($\\beta$) in the YAML file of the Sortformer diarizer model as follows:\n",
"\n",
"```yaml\n",
"model: \n",
" sample_rate: 16000\n",
" pil_weight: 0.5 # Weight for Permutation Invariant Loss (PIL) used in training the Sortformer diarizer model\n",
" ats_weight: 0.5 # Weight for Arrival Time Sort (ATS) loss in training the Sortformer diarizer model\n",
" max_num_of_spks: 4 \n",
" ...\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train a Sortformer Diarizer Model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example Data Creation\n",
"\n",
"In this tutorial, we will create a simple toy training dataset using the [NeMo Multispeaker Simulator](https://github.com/NVIDIA/NeMo/blob/main/tutorials/tools/Multispeaker_Simulator.ipynb), with Librispeech as the source dataset for demonstration purposes. If you already have datasets with proper speaker annotations (RTTM files), you can replace the simulated dataset with your own.\n",
"\n",
"If you don’t have access to any speaker diarization datasets, the [NeMo Multispeaker Simulator](https://github.com/NVIDIA/NeMo/blob/main/tutorials/tools/Multispeaker_Simulator.ipynb) can be used to generate a sufficient amount of data samples to meet your requirements.\n",
"\n",
"For more details on the data simulator, refer to the documentation in the [NeMo Multispeaker Simulator](https://github.com/NVIDIA/NeMo/blob/main/tutorials/tools/Multispeaker_Simulator.ipynb). This tutorial will not cover the configurations and detailed process of data simulation."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Install dependencies for data simulator\n",
"!apt-get install sox libsndfile1 ffmpeg\n",
"!pip install wget\n",
"!pip install unidecode\n",
"!pip install \"matplotlib>=3.3.2\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Data Simulation Step 1: Download Required Resources\n",
"\n",
"We need to download the LibriSpeech corpus and corresponding word alignments for generating synthetic multi-speaker audio sessions. In addition, we need to download necessary data cleaning scripts from NeMo git."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"NEMO_DIR_PATH = \"NeMo\"\n",
"BRANCH = 'main'\n",
"\n",
"# download scripts if not already there \n",
"if not os.path.exists('NeMo/scripts'):\n",
" print(\"Downloading necessary scripts\")\n",
" !mkdir -p NeMo/scripts/dataset_processing\n",
" !mkdir -p NeMo/scripts/speaker_tasks\n",
" !wget -P NeMo/scripts/dataset_processing/ https://raw.githubusercontent.com/NVIDIA/NeMo/{BRANCH}/scripts/dataset_processing/get_librispeech_data.py\n",
" !wget -P NeMo/scripts/speaker_tasks/ https://raw.githubusercontent.com/NVIDIA/NeMo/{BRANCH}/scripts/speaker_tasks/create_alignment_manifest.py\n",
" !wget -P NeMo/scripts/speaker_tasks/ https://raw.githubusercontent.com/NVIDIA/NeMo/{BRANCH}/scripts/speaker_tasks/pathfiles_to_diarize_manifest.py"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now that we have downloaded all the necessary scripts for data creation and preparation, we can start the data simulation step by downloading the LibriSpeech corpus."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!mkdir -p LibriSpeech\n",
"!python {NEMO_DIR_PATH}/scripts/dataset_processing/get_librispeech_data.py \\\n",
" --data_root LibriSpeech \\\n",
" --data_sets dev_clean"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can get the forced word alignments data for the LibriSpeech corpus from [this repository.](https://github.com/CorentinJ/librispeech-alignments). Full forced alignments data can be downloaded at [google drive link for alignments data](https://drive.google.com/file/d/1WYfgr31T-PPwMcxuAq09XZfHQO5Mw8fE/view?usp=sharing). We will download only a subset of forced alignment data containing dev-clean part."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!wget -nc https://dldata-public.s3.us-east-2.amazonaws.com/LibriSpeech_Alignments.tar.gz\n",
"!tar -xzf LibriSpeech_Alignments.tar.gz\n",
"!rm -f LibriSpeech_Alignments.tar.gz"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Data Simulation Step 2: Produce Manifest File with Forced Alignments\n",
"\n",
"We will merge the LibriSpeech manifest files and LibriSpeech forced alignments into one manifest file for ease of use when generating synthetic data. Create alignment files by running the following script.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!python {NEMO_DIR_PATH}/scripts/speaker_tasks/create_alignment_manifest.py \\\n",
" --input_manifest_filepath LibriSpeech/dev_clean.json \\\n",
" --base_alignment_path LibriSpeech_Alignments \\\n",
" --output_manifest_filepath ./dev-clean-align.json \\\n",
" --ctm_output_directory ./ctm_out \\\n",
" --libri_dataset_split dev-clean"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Data Simulation Step 3: Set data simulation parameters"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now that we have downloaded all the sources we need for data creation, we need to download data simulator configurations in `.yaml` format. Download the YAML file and download `data_simulator.py` script from NeMo repository."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from omegaconf import OmegaConf\n",
"import os\n",
"ROOT = os.getcwd()\n",
"conf_dir = os.path.join(ROOT,'conf')\n",
"!mkdir -p {conf_dir}\n",
"CONFIG_PATH = os.path.join(conf_dir, 'data_simulator.yaml')\n",
"if not os.path.exists(CONFIG_PATH):\n",
" !wget -P {conf_dir} https://raw.githubusercontent.com/NVIDIA/NeMo/{BRANCH}/tools/speech_data_simulator/conf/data_simulator.yaml\n",
"\n",
"config = OmegaConf.load(CONFIG_PATH)\n",
"print(OmegaConf.to_yaml(config))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Data Simulation Step 4: Generate Simulated Audio Session\n",
"\n",
"We will generate a set of example sessions with the following specifications:\n",
"\n",
"- 10 example sessions for train \n",
"- 10 example sessions for validation\n",
"- 2-speakers in each session\n",
"- 90 seconds of recordings\n",
"\n",
"We need to setup different seed for train and validation sets."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from nemo.collections.asr.data.data_simulation import MultiSpeakerSimulator\n",
"\n",
"# Generate train set \n",
"ROOT = os.getcwd()\n",
"data_dir = os.path.join(ROOT,'simulated_train')\n",
"config.data_simulator.random_seed=10\n",
"config.data_simulator.manifest_filepath=\"./dev-clean-align.json\"\n",
"config.data_simulator.outputs.output_dir=data_dir\n",
"config.data_simulator.session_config.num_sessions=10\n",
"config.data_simulator.session_config.num_speakers=2\n",
"config.data_simulator.session_config.session_length=90\n",
"config.data_simulator.background_noise.add_bg=False \n",
"\n",
"lg = MultiSpeakerSimulator(cfg=config)\n",
"lg.generate_sessions()\n",
"\n",
"# Generate validation set \n",
"data_dir = os.path.join(ROOT,'simulated_valid')\n",
"config.data_simulator.random_seed=20\n",
"config.data_simulator.outputs.output_dir=data_dir\n",
"\n",
"lg = MultiSpeakerSimulator(cfg=config)\n",
"lg.generate_sessions()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now that parameter setting is done, generate the samples by launching `generate_sessions()`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lg = MultiSpeakerSimulator(cfg=config)\n",
"lg.generate_sessions()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Data preparation step 5: Listen to and Visualize Session\n",
"\n",
"Listen to the audio and visualize the corresponding speaker timestamps (recorded in a RTTM file for each session)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"import os\n",
"import IPython\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import librosa\n",
"from nemo.collections.asr.parts.utils.speaker_utils import rttm_to_labels, labels_to_pyannote_object\n",
"\n",
"ROOT = os.getcwd()\n",
"data_dir = os.path.join(ROOT,'simulated_train')\n",
"audio = os.path.join(data_dir,'multispeaker_session_0.wav')\n",
"rttm = os.path.join(data_dir,'multispeaker_session_0.rttm')\n",
"\n",
"sr = 16000\n",
"signal, sr = librosa.load(audio,sr=sr) \n",
"\n",
"fig,ax = plt.subplots(1,1)\n",
"fig.set_figwidth(20)\n",
"fig.set_figheight(2)\n",
"plt.plot(np.arange(len(signal)),signal,'gray')\n",
"fig.suptitle('Synthetic Audio Session', fontsize=16)\n",
"plt.xlabel('Time (s)', fontsize=18)\n",
"plt.yticks([], [])\n",
"ax.margins(x=0)\n",
"a,_ = plt.xticks()\n",
"plt.xticks(a[:-1],a[:-1]/sr);\n",
"IPython.display.Audio(audio)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can visually check the ground-truth file of the first sample by running the following commands. We can see that it has plenty of overlap between two speakers. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# display speaker labels for reference\n",
"labels = rttm_to_labels(rttm)\n",
"reference = labels_to_pyannote_object(labels)\n",
"reference"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can check that corresponding RTTM files are generated as ground-truth labels for training and evaluation."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!cat simulated_train/multispeaker_session_0.rttm | head -10"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Data preparation step 6: Check out the created files\n",
"\n",
"The following files are generated from data simulator:\n",
"\n",
"* _wav files_ (one per audio session) - the output audio sessions\n",
"* _rttm files_ (one per audio session) - the speaker timestamps for the corresponding audio session (used for diarization training)\n",
"* _list files_ (one per file type per batch of sessions) - a list of generated files of the given type (e.g., wav, rttm), used primarily for manifest creation\n",
"\n",
"Check if the files we need are generated by running the following commands."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"\\n Training audio files:\")\n",
"!ls simulated_train/*.wav\n",
"print(\"\\n Training audio files:\")\n",
"!ls simulated_train/*.rttm\n",
"print(\"\\n Training RTTM list content:\")\n",
"!cat simulated_train/synthetic_wav.list\n",
"print(\"\\n Training RTTM list content:\")\n",
"!cat simulated_train/synthetic_rttm.list\n",
"\n",
"print(\"\\n Validation audio files:\")\n",
"!ls simulated_valid/*.wav\n",
"print(\"\\n Validation audio files:\")\n",
"!ls simulated_valid/*.rttm\n",
"print(\"\\n Validation RTTM list content:\")\n",
"!cat simulated_valid/synthetic_wav.list\n",
"print(\"\\n Validation RTTM list content:\")\n",
"!cat simulated_valid/synthetic_rttm.list"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prepare Training Data for Sortformer diarizer"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now that we have datasets for both train and validation (dev), we can start preparing and cleaning the data samples for training. Make sure you have the following list of files:\n",
"\n",
"**Training set** \n",
"\n",
"- Train audio files `.wav`\n",
"- A train audio list file `.list`\n",
"- Train RTTM files `.rttm`\n",
"- A train RTTM list content `.list`\n",
"\n",
"**Validation set** \n",
"\n",
"- Validation audio files `.wav`\n",
"- A validation audio list file `.list`\n",
"- Validation RTTM files `.rttm`\n",
"- A validation RTTM list file `.list`\n",
"\n",
"\n",
"Based on these files, we need to create manifest files containing data samples we have. If you don't have a `.list` file, you need to create a `.list` file for the `.wav` files and `.rttm` files."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Create a NeMo manifest (.json) file for training dataset\n",
"!python {NEMO_DIR_PATH}/scripts/speaker_tasks/pathfiles_to_diarize_manifest.py \\\n",
" --add_duration \\\n",
" --paths2audio_files='simulated_train/synthetic_wav.list' \\\n",
" --paths2rttm_files='simulated_train/synthetic_rttm.list' \\\n",
" --manifest_filepath='simulated_train/sortformer_train.json'\n",
"\n",
"# Create a NeMo manifest (.json) file for validation (dev) dataset\n",
"!python {NEMO_DIR_PATH}/scripts/speaker_tasks/pathfiles_to_diarize_manifest.py \\\n",
" --add_duration \\\n",
" --paths2audio_files='simulated_valid/synthetic_wav.list' \\\n",
" --paths2rttm_files='simulated_valid/synthetic_rttm.list' \\\n",
" --manifest_filepath='simulated_valid/sortformer_valid.json'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If you print the content of the created manifest file, you can see that `.rttm` files in the list and `.wav` files are grouped together in the generated manifest files."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"\\nTraining Dataset:\")\n",
"!cat simulated_train/sortformer_train.json | tail -5\n",
"print(\"\\nValidation Dataset:\")\n",
"!cat simulated_valid/sortformer_valid.json | tail -5 "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train a Sortformer Diarizer Model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now that we have prepared all the necessary dataset, we can train an Sortformer diarizer model on the prepared dataset. Download YAML file for training form NeMo repository and load the configuration into `config` variable."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import nemo\n",
"import os\n",
"import lightning.pytorch as pl\n",
"from omegaconf import OmegaConf\n",
"from nemo.collections.asr.models import SortformerEncLabelModel\n",
"from nemo.utils.exp_manager import exp_manager\n",
"\n",
"NEMO_ROOT = os.getcwd()\n",
"!mkdir -p conf \n",
"!wget -P conf https://raw.githubusercontent.com/NVIDIA/NeMo/{BRANCH}/examples/speaker_tasks/diarization/conf/neural_diarizer/sortformer_diarizer_hybrid_loss_4spk-v1.yaml\n",
"MODEL_CONFIG = os.path.join(NEMO_ROOT,'conf/sortformer_diarizer_hybrid_loss_4spk-v1.yaml')\n",
"config = OmegaConf.load(MODEL_CONFIG)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Setup the `manifest_filepath` for `train_ds` and `validation_ds` by feeding the `json` file paths based on the created training dataset."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"curr_dir = os.getcwd() + \"/\"\n",
"config.model.train_ds.manifest_filepath = f'{curr_dir}simulated_train/sortformer_train.json'\n",
"config.model.test_ds.manifest_filepath = f'{curr_dir}simulated_valid/sortformer_valid.json'\n",
"config.model.validation_ds.manifest_filepath = f'{curr_dir}simulated_valid/sortformer_valid.json'\n",
"config.trainer.strategy = \"ddp_notebook\"\n",
"config.batch_size = 3\n",
"\n",
"config.trainer.devices=1\n",
"config.accelerator=\"gpu\"\n",
"print(os.getcwd())\n",
"\n",
"print(\"config.model.train_ds.manifest_filepath \", config.model.train_ds.manifest_filepath )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Setup a model with the given configuration and start a training session."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"trainer = pl.Trainer(devices=1, accelerator='gpu', max_epochs=50,\n",
" enable_checkpointing=False, logger=False,\n",
" log_every_n_steps=5, check_val_every_n_epoch=10)\n",
"\n",
"exp_manager(trainer, config.get(\"exp_manager\", None))\n",
"sortformer_model = SortformerEncLabelModel(cfg=config.model, trainer=trainer)\n",
"sortformer_model.maybe_init_from_pretrained_checkpoint(config)\n",
"trainer.fit(sortformer_model)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
},
"pycharm": {
"stem_cell": {
"cell_type": "raw",
"metadata": {
"collapsed": false
},
"source": []
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|