File size: 36,230 Bytes
b386992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "\"\"\"\n",
    "You can run either this notebook locally (if you have all the dependencies and a GPU) or on Google Colab.\n",
    "\n",
    "Instructions for setting up Colab are as follows:\n",
    "1. Open a new Python 3 notebook.\n",
    "2. Import this notebook from GitHub (File -> Upload Notebook -> \"GITHUB\" tab -> copy/paste GitHub URL)\n",
    "3. Connect to an instance with a GPU (Runtime -> Change runtime type -> select \"GPU\" for hardware accelerator)\n",
    "4. Run this cell to set up dependencies.\n",
    "5. Restart the runtime (Runtime -> Restart Runtime) for any upgraded packages to take effect\n",
    "\"\"\"\n",
    "# If you're using Google Colab and not running locally, run this cell.\n",
    "\n",
    "NEMO_DIR_PATH = \"NeMo\"\n",
    "BRANCH = 'main'\n",
    "\n",
    "! git clone https://github.com/NVIDIA/NeMo\n",
    "%cd NeMo\n",
    "! python -m pip install git+https://github.com/NVIDIA/NeMo.git@{BRANCH}#egg=nemo_toolkit[asr]\n",
    "%cd .."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# End-to-end Speaker Diarization with Sortformer"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Sortformer: Bridging the Gap between tokens (ASR) and Timestamps (Diarization)\n",
    "\n",
    "### Speaker Diarization as a part of ASR system\n",
    "\n",
    "Speaker diarization is all about figuring out who’s speaking when in an audio recording. In the world of automatic speech recognition (ASR), this becomes even more important for handling conversations with multiple speakers. Multispeaker ASR (also called speaker-attributed or multitalker ASR) uses this process to not just transcribe what’s being said, but also to label each part of the transcript with the right speaker.\n",
    "\n",
    "As ASR technology continues to advance, speaker diarization is increasingly becoming part of the ASR workflow itself. Some systems now handle speaker labeling and transcription at the same time during decoding. This means you don’t just get accurate text—you're also getting insights into who said what, making it more useful for conversational analysis.\n",
    "\n",
    "### Challenges in Integrating Speaker Diarization and ASR\n",
    "\n",
    "However, despite significant advancements, integrating speaker diarization and ASR into a unified, seamless system remains a considerable challenge. A key obstacle lies in the need for extensive high-quality, annotated audio data featuring multiple speakers. Acquiring such data is far more complex than collecting single-speaker audio or image datasets. This challenge is particularly pronounced for low-resource languages and domains like healthcare, where strict privacy regulations further constrain data availability.\n",
    "\n",
    "On top of that, many real-world use cases need these models to handle really long audio files—sometimes hours of conversation at a time. Training on such lengthy data is even more complicated because it’s hard to find or annotate. This creates a big gap between what’s needed and what’s available, making multispeaker ASR one of the toughest nuts to crack in the field of speech technology."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<img src=\"images/intro_comparison.png\" alt=\"Intro Comparison\" style=\"width: 800px;\"/>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "\n",
    "### Sortformer: Simplifying Multispeaker ASR with Arrival Time Sorting\n",
    "\n",
    "To tackle the complexities of multispeaker automatic speech recognition (ASR), we introduce [*Sortformer*](https://arxiv.org/abs/2409.06656), a new approach that incorporates Sort-Loss and techniques to align timestamps with text tokens. Traditional approaches like permutation-invariant loss (PIL) face challenges when applied in batchable and differentiable computational graphs, especially since token-based objectives struggle to incorporate speaker-specific attributes into PIL-based loss functions.\n",
    "\n",
    "To address this, we propose an arrival time sorting (ATS) approach. In this method, speaker tokens from ASR outputs and speaker timestamps from diarization outputs are sorted by their arrival times to resolve permutations. This approach allows the multispeaker ASR system to be trained or fine-tuned using token-based cross-entropy loss, eliminating the need for timestamp-based or frame-level objectives with PIL."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<img src=\"images/ats.png\" alt=\"Arrival Time Sort\" style=\"width: 600px;\"/>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "\n",
    "The ATS-based multispeaker ASR system is powered by an end-to-end neural diarizer model, Sortformer, which generates speaker-label timestamps in arrival time order (ATO). To train the neural diarizer to produce sorted outputs, we introduce Sort Loss, a method that creates gradients enabling the Transformer model to learn the ATS mechanism.\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<img src=\"images/main_dataflow.png\" alt=\"Main Dataflow\" style=\"width: 500px;\"/>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Additionally, as shown in the above figure, our diarization system integrates directly with the ASR encoder. By embedding speaker supervision data as speaker kernels into the ASR encoder states, the system seamlessly combines speaker and transcription information. This unified approach improves performance and simplifies the overall architecture."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "As a result, our end-to-end multispeaker ASR system is fully or partially trainable with token objectives, allowing both the ASR and speaker diarization modules to be trained or fine-tuned using these objectives. Additionally, during the multispeaker ASR training phase, no specialized loss calculation functions are needed when using Sortformer, as frameworks for standard single-speaker ASR models can be employed. These compatibilities greatly simplify and accelerate the training and fine-tuning process of multispeaker ASR systems. \n",
    "\n",
    "On top of all these benefits, *Sortformer* can be used as a stand-alone end-to-end speaker diarization model. By training a Sortformer diarizer model especially on high-quality simulated data with accurate time-stamps, you can boost the performance of multi-speaker ASR systems, just by integrating the *Sortformer* model as _*Speaker Supervision*_ model in a computation graph.\n",
    "\n",
    "In this tutorial, we will walk you through the process of training a Sortformer diarizer model with toy dataset. Before starting, we will introduce the concepts of Sort-Loss calculation and the Hybrid loss technique."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Sort-Loss for *Sortformer* Diarizer"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<img src=\"images/sortformer.png\" alt=\"Sortformer Model with Hybrid Loss\" style=\"width: 500px;\"/>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Sort-Loss is designed to compare the predicted outputs with the true labels, typically sorted in arrival-time order or another relevant metric. The key distinction that *Sortformer* introduces compared to previous end-to-end diarization systems such as [EEND-SA](https://arxiv.org/pdf/1909.06247), [EEND-EDA](https://arxiv.org/abs/2106.10654) lies in the organization of class presence $\\mathbf{\\hat{Y}}$.\n",
    "\n",
    "The figure below illustrates the difference between Sort-Loss and permutation-invariant loss (PIL) or permutation-free loss.\n",
    "\n",
    "   - PIL is calculated by finding the permutation of the target that minimizes the loss value between the prediction and the target.\n",
    "\n",
    "   - Sort-Loss simply compares the arrival-time-sorted version of speaker activity outputs for both the prediction and the target. Note that sometimes the same ground-truth labels lead to different target matrices for Sort-Loss and PIL.\n",
    "\n",
    "For example, the figure below shows two identical source target matrices (the two matrices at the top), but the resulting target matrices for Sort-Loss and PIL are different."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<img src=\"images/loss_types.png\" alt=\"PIL model VS SortLoss model\" style=\"width: 1000px;\"/>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "In mathmatical terms, Sort-Loss can be expressed as follows:\n",
    "\n",
    "* **Arrival Time Sorting Function with $\\Psi$ function**   \n",
    "\n",
    "    Let $\\Psi$ be a function that determines the first segment's arrival time for a speaker bin:\n",
    "$$\n",
    "    \\Psi\\big(\\mathbf{y}_{k}\\big) = \\min \\{ t' \\mid y_{k, t'} \\neq 0, t' \\in [1, T] \\} = t^{0}_{k},\n",
    "$$\n",
    " where $t^{0}_{k}$ is the frame index of the first active segment for the $k$-th speaker.\n",
    "\n",
    "Sortformer aims to generate predictions $\\mathbf{\\hat{y}}_{k}$ for each speaker $k$ such that:\n",
    "$$\n",
    "\\Psi(\\mathbf{\\hat{y}}_{1}) \\leq \\Psi(\\mathbf{\\hat{y}}_{2}) \\leq \\cdots \\leq \\Psi(\\mathbf{\\hat{y}}_{K}),\n",
    "$$\n",
    "ensuring the model produces class presence outputs ($\\mathbf{\\hat{Y}}$) sorted by arrival time.\n",
    "\n",
    "* **Sorting Function $\\eta$ and Sorted Targets $\\mathbf{Y}_{\\eta}$**  \n",
    "\n",
    "\n",
    "Let $\\eta$ be the sorting function applied to speaker indices $\\{1, \\dots, K\\}$. The sorted ground-truth matrix $\\mathbf{Y}_{\\eta}$ is defined as:\n",
    "$$\n",
    "\\eta\\big( \\mathbf{Y} \\big) = \\mathbf{Y}_{\\eta} = \\left(\\mathbf{y}_{\\eta(1)}, \\dots, \\mathbf{y}_{\\eta(K)} \\right).\n",
    "$$\n",
    "Using $\\Psi$, the following condition holds for the sorted ground-truth labels $\\mathbf{y}_{\\eta(k)}$:\n",
    "$$\n",
    "\\Psi(\\mathbf{y}_{\\eta(1)}) \\leq \\Psi(\\mathbf{y}_{\\eta(2)}) \\leq \\cdots \\leq \\Psi(\\mathbf{y}_{\\eta(K)}).\n",
    "$$\n",
    "\n",
    "* **Sort Loss ($\\mathcal{L}_{\\text{Sort}}$) Definition**  \n",
    "\n",
    "\n",
    "Sort Loss is computed as:\n",
    "$$\n",
    "\\mathcal{L}_{\\text{Sort}}\\left(\\mathbf{Y}, \\mathbf{P}\\right) = \\mathcal{L}_{\\text{BCE}} \\left(\\mathbf{Y}_{\\eta}, \\mathbf{P}\\right) = \\frac{1}{K} \\sum_{k=1}^{K} \\mathcal{L}_{\\text{BCE}}(\\mathbf{y}_{\\eta(k)}, \\mathbf{q}_k),\n",
    "$$\n",
    "where:\n",
    "\n",
    "- $\\mathbf{y}_{\\eta(k)}$: True labels sorted by arrival time using the sorting function $\\eta$.\n",
    "- $\\mathbf{q}_k$: Predicted outputs for the $k$-th speaker.\n",
    "- $\\mathcal{L}_{\\text{BCE}}(\\mathbf{y}_{\\eta(k)}, \\mathbf{q}_k)$: Binary cross-entropy (BCE) loss for the $k$-th speaker.\n",
    "- $K$: Total number of speakers.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now that we learn the concept of Sort Loss and Sortformer, we can now calculate Sort Loss based target matrix and PIL-based target matrix to compare the difference in target-value setting atrix and loss calculation.\n",
    "\n",
    "- raw target matrix $\\mathbf{Y}$: `raw_targets`\n",
    "- prediction matrix $\\mathbf{P}$: `preds`\n",
    "- ATS target matrix $\\mathbf{Y}_{\\eta}$: `ats_targets`\n",
    "- PIL target matrix $\\mathbf{Y}_{\\text{PIL}}$: `pil_targets`\n",
    "\n",
    "First, assign the values in the above examples to the respective variables to create tensors."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "\n",
    "# Define the binary grid as a Python list\n",
    "raw_targets_list = [[\n",
    "    [0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],\n",
    "    [0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1],\n",
    "    [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0],\n",
    "    [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1]\n",
    "],]\n",
    "\n",
    "preds_list = [[\n",
    "    [1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0],\n",
    "    [0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0],\n",
    "    [0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1],\n",
    "    [0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1],\n",
    "],]\n",
    "\n",
    "# Convert the list to a PyTorch tensor\n",
    "raw_targets = torch.tensor(raw_targets_list).transpose(1,2)\n",
    "preds = torch.tensor(preds_list).transpose(1,2)\n",
    "\n",
    "print(raw_targets.shape)\n",
    "print(preds.shape)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now, import `get_ats_targets` and `get_pil_targets` functions from the `nemo.collections.asr.parts.utils.asr_multispeaker_utils` module to calculate the ATS and PIL targets. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import itertools\n",
    "import torch\n",
    "import nemo\n",
    "from nemo.collections.asr.parts.utils.asr_multispeaker_utils import get_ats_targets, get_pil_targets\n",
    "\n",
    "max_num_of_spks = 4  # Number of speakers\n",
    "speaker_inds = list(range(max_num_of_spks))\n",
    "speaker_permutations = torch.tensor(list(itertools.permutations(speaker_inds)))  # Get all permutations\n",
    "\n",
    "\n",
    "ats_target = get_ats_targets(labels=raw_targets.clone(), preds=preds, speaker_permutations=speaker_permutations)\n",
    "pil_target = get_pil_targets(labels=raw_targets.clone(), preds=preds, speaker_permutations=speaker_permutations)\n",
    "\n",
    "print(f\"Predicted tensor:\")\n",
    "print(preds[0].T)\n",
    "\n",
    "print(f\"\\nATS target:\")\n",
    "print(ats_target[0].T)\n",
    "\n",
    "print(f\"\\nPIL target:\")\n",
    "print(pil_target[0].T)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can see that ATS target and PIL target are different. Now, you will display the ATS and PIL target matrices to visually compare the difference and also calculate loss values using the BCE loss."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import torch\n",
    "import matplotlib.pyplot as plt\n",
    "import numpy as np\n",
    "from nemo.collections.asr.losses.bce_loss import BCELoss \n",
    "\n",
    "bce_loss = BCELoss()\n",
    "# reduction='mean', class_normalization=False)\n",
    "\n",
    "def plot_diarout(preds, title_text, cmap_str):\n",
    "\n",
    "    preds_mat = preds.cpu().numpy().transpose()\n",
    "    grid_color_p = 'gray'\n",
    "    LW, FS = 0.5, 10\n",
    "\n",
    "    yticklabels = [\"spk0\", \"spk1\", \"spk2\", \"spk3\"]\n",
    "    yticks = np.arange(len(yticklabels))\n",
    "    fig, axs = plt.subplots(1, 1, figsize=(20, 2))  # 1 row, 2 columns for preds and targets\n",
    "\n",
    "    axs.imshow(preds_mat, cmap=cmap_str, interpolation='nearest')\n",
    "    axs.set_title(title_text, fontsize=FS)\n",
    "    axs.set_xticks(np.arange(-0.5, preds_mat.shape[1], 1), minor=True)\n",
    "    axs.set_yticks(np.arange(-0.5, preds_mat.shape[0], 1), minor=True)\n",
    "    axs.set_yticks(yticks)\n",
    "    axs.set_yticklabels(yticklabels)\n",
    "    axs.set_xlabel(f\"80 ms Frames\", fontsize=FS)\n",
    "    \n",
    "    # Enable grid\n",
    "    axs.grid(which='minor', color=grid_color_p, linestyle='-', linewidth=LW)\n",
    "    axs.tick_params(which=\"minor\", size=0)  # Hide minor ticks\n",
    "    axs.tick_params(which=\"major\", size=5)  # Show major ticks\n",
    "\n",
    "    plt.savefig('plot.png', dpi=300) # bbox_inches='tight')\n",
    "    plt.show()\n",
    "\n",
    "target_length = torch.tensor([ats_target.shape[1]]) \n",
    "print(f\"Target length: {target_length}\")\n",
    "plot_diarout(preds[0], title_text='Predictions', cmap_str='viridis')\n",
    "\n",
    "loss_ats = bce_loss(probs=preds.float(), labels=ats_target.float(), target_lens=target_length)\n",
    "print(f\"[ {loss_ats:.4f} ] is the loss from Arrival Time Sort Target: \")\n",
    "plot_diarout(ats_target[0], title_text='ATS Target', cmap_str='summer')\n",
    "\n",
    "loss_pil = bce_loss(probs=preds.float(), labels=pil_target.float(), target_lens=target_length)\n",
    "print(f\"[ {loss_pil:.4f} ] is the loss from Permutation Invariant Loss Target\")\n",
    "plot_diarout(pil_target[0], title_text='PIL Target', cmap_str='inferno')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "While Sortformer can be trained solely using Sort Loss, there is a limitation: the arrival time estimation is not always accurate. This issue becomes more pronounced as the number of speakers increases during the training session.\n",
    "\n",
    "Note that Sortformer models can be trained using Sort Loss only, PIL only, or a hybrid loss by adjusting the weight between these two loss components. The hybrid loss $\\mathcal{L}_{\\text{hybrid}}$ can be described as follows:\n",
    "\n",
    "\n",
    "$$\n",
    "\\mathcal{L}_{\\text{hybrid}} = \\alpha \\cdot \\mathcal{L}_{\\text{Sort}} + \\beta \\cdot \\mathcal{L}_{\\text{PIL}},\n",
    "$$\n",
    "\n",
    "The weight between ATS and PIL can be adjusted with the variable `model.ats_weight`($\\alpha$) and `model.pil_weight`($\\beta$) in the YAML file of the Sortformer diarizer model as follows:\n",
    "\n",
    "```yaml\n",
    "model: \n",
    "  sample_rate: 16000\n",
    "  pil_weight: 0.5 # Weight for Permutation Invariant Loss (PIL) used in training the Sortformer diarizer model\n",
    "  ats_weight: 0.5 # Weight for Arrival Time Sort (ATS) loss in training the Sortformer diarizer model\n",
    "  max_num_of_spks: 4 \n",
    "  ...\n",
    "```"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Train a Sortformer Diarizer Model"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Example Data Creation\n",
    "\n",
    "In this tutorial, we will create a simple toy training dataset using the [NeMo Multispeaker Simulator](https://github.com/NVIDIA/NeMo/blob/main/tutorials/tools/Multispeaker_Simulator.ipynb), with Librispeech as the source dataset for demonstration purposes. If you already have datasets with proper speaker annotations (RTTM files), you can replace the simulated dataset with your own.\n",
    "\n",
    "If you don’t have access to any speaker diarization datasets, the [NeMo Multispeaker Simulator](https://github.com/NVIDIA/NeMo/blob/main/tutorials/tools/Multispeaker_Simulator.ipynb) can be used to generate a sufficient amount of data samples to meet your requirements.\n",
    "\n",
    "For more details on the data simulator, refer to the documentation in the [NeMo Multispeaker Simulator](https://github.com/NVIDIA/NeMo/blob/main/tutorials/tools/Multispeaker_Simulator.ipynb). This tutorial will not cover the configurations and detailed process of data simulation."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Install dependencies for data simulator\n",
    "!apt-get install sox libsndfile1 ffmpeg\n",
    "!pip install wget\n",
    "!pip install unidecode\n",
    "!pip install \"matplotlib>=3.3.2\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Data Simulation Step 1:  Download Required Resources\n",
    "\n",
    "We need to download the LibriSpeech corpus and corresponding word alignments for generating synthetic multi-speaker audio sessions. In addition, we need to download necessary data cleaning scripts from NeMo git."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "NEMO_DIR_PATH = \"NeMo\"\n",
    "BRANCH = 'main'\n",
    "\n",
    "# download scripts if not already there \n",
    "if not os.path.exists('NeMo/scripts'):\n",
    "  print(\"Downloading necessary scripts\")\n",
    "  !mkdir -p NeMo/scripts/dataset_processing\n",
    "  !mkdir -p NeMo/scripts/speaker_tasks\n",
    "  !wget -P NeMo/scripts/dataset_processing/ https://raw.githubusercontent.com/NVIDIA/NeMo/{BRANCH}/scripts/dataset_processing/get_librispeech_data.py\n",
    "  !wget -P NeMo/scripts/speaker_tasks/ https://raw.githubusercontent.com/NVIDIA/NeMo/{BRANCH}/scripts/speaker_tasks/create_alignment_manifest.py\n",
    "  !wget -P NeMo/scripts/speaker_tasks/ https://raw.githubusercontent.com/NVIDIA/NeMo/{BRANCH}/scripts/speaker_tasks/pathfiles_to_diarize_manifest.py"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now that we have downloaded all the necessary scripts for data creation and preparation, we can start the data simulation step by downloading the LibriSpeech corpus."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "!mkdir -p LibriSpeech\n",
    "!python {NEMO_DIR_PATH}/scripts/dataset_processing/get_librispeech_data.py \\\n",
    "  --data_root LibriSpeech \\\n",
    "  --data_sets dev_clean"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can get the forced word alignments data for the LibriSpeech corpus from [this repository.](https://github.com/CorentinJ/librispeech-alignments). Full forced alignments data can be downloaded at [google drive link for alignments data](https://drive.google.com/file/d/1WYfgr31T-PPwMcxuAq09XZfHQO5Mw8fE/view?usp=sharing). We will download only a subset of forced alignment data containing dev-clean part."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "!wget -nc https://dldata-public.s3.us-east-2.amazonaws.com/LibriSpeech_Alignments.tar.gz\n",
    "!tar -xzf LibriSpeech_Alignments.tar.gz\n",
    "!rm -f LibriSpeech_Alignments.tar.gz"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Data Simulation Step 2:  Produce Manifest File with Forced Alignments\n",
    "\n",
    "We will merge the LibriSpeech manifest files and LibriSpeech forced alignments into one manifest file for ease of use when generating synthetic data. Create alignment files by running the following script.\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "!python {NEMO_DIR_PATH}/scripts/speaker_tasks/create_alignment_manifest.py \\\n",
    "  --input_manifest_filepath LibriSpeech/dev_clean.json \\\n",
    "  --base_alignment_path LibriSpeech_Alignments \\\n",
    "  --output_manifest_filepath ./dev-clean-align.json \\\n",
    "  --ctm_output_directory ./ctm_out \\\n",
    "  --libri_dataset_split dev-clean"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Data Simulation Step 3:  Set data simulation parameters"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now that we have downloaded all the sources we need for data creation, we need to download data simulator configurations in `.yaml` format. Download the YAML file and download `data_simulator.py` script from NeMo repository."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from omegaconf import OmegaConf\n",
    "import os\n",
    "ROOT = os.getcwd()\n",
    "conf_dir = os.path.join(ROOT,'conf')\n",
    "!mkdir -p {conf_dir}\n",
    "CONFIG_PATH = os.path.join(conf_dir, 'data_simulator.yaml')\n",
    "if not os.path.exists(CONFIG_PATH):\n",
    "  !wget -P {conf_dir} https://raw.githubusercontent.com/NVIDIA/NeMo/{BRANCH}/tools/speech_data_simulator/conf/data_simulator.yaml\n",
    "\n",
    "config = OmegaConf.load(CONFIG_PATH)\n",
    "print(OmegaConf.to_yaml(config))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Data Simulation Step 4:   Generate Simulated Audio Session\n",
    "\n",
    "We will generate a set of example sessions with the following specifications:\n",
    "\n",
    "- 10 example sessions for train  \n",
    "- 10 example sessions for validation\n",
    "- 2-speakers in each session\n",
    "- 90 seconds of recordings\n",
    "\n",
    "We need to setup different seed for train and validation sets."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from nemo.collections.asr.data.data_simulation import MultiSpeakerSimulator\n",
    "\n",
    "# Generate train set \n",
    "ROOT = os.getcwd()\n",
    "data_dir = os.path.join(ROOT,'simulated_train')\n",
    "config.data_simulator.random_seed=10\n",
    "config.data_simulator.manifest_filepath=\"./dev-clean-align.json\"\n",
    "config.data_simulator.outputs.output_dir=data_dir\n",
    "config.data_simulator.session_config.num_sessions=10\n",
    "config.data_simulator.session_config.num_speakers=2\n",
    "config.data_simulator.session_config.session_length=90\n",
    "config.data_simulator.background_noise.add_bg=False \n",
    "\n",
    "lg = MultiSpeakerSimulator(cfg=config)\n",
    "lg.generate_sessions()\n",
    "\n",
    "# Generate validation set \n",
    "data_dir = os.path.join(ROOT,'simulated_valid')\n",
    "config.data_simulator.random_seed=20\n",
    "config.data_simulator.outputs.output_dir=data_dir\n",
    "\n",
    "lg = MultiSpeakerSimulator(cfg=config)\n",
    "lg.generate_sessions()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now that parameter setting is done, generate the samples by launching `generate_sessions()`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "lg = MultiSpeakerSimulator(cfg=config)\n",
    "lg.generate_sessions()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Data preparation step 5: Listen to and Visualize Session\n",
    "\n",
    "Listen to the audio and visualize the corresponding speaker timestamps (recorded in a RTTM file for each session)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "import os\n",
    "import IPython\n",
    "import matplotlib.pyplot as plt\n",
    "import numpy as np\n",
    "import librosa\n",
    "from nemo.collections.asr.parts.utils.speaker_utils import rttm_to_labels, labels_to_pyannote_object\n",
    "\n",
    "ROOT = os.getcwd()\n",
    "data_dir = os.path.join(ROOT,'simulated_train')\n",
    "audio = os.path.join(data_dir,'multispeaker_session_0.wav')\n",
    "rttm = os.path.join(data_dir,'multispeaker_session_0.rttm')\n",
    "\n",
    "sr = 16000\n",
    "signal, sr = librosa.load(audio,sr=sr) \n",
    "\n",
    "fig,ax = plt.subplots(1,1)\n",
    "fig.set_figwidth(20)\n",
    "fig.set_figheight(2)\n",
    "plt.plot(np.arange(len(signal)),signal,'gray')\n",
    "fig.suptitle('Synthetic Audio Session', fontsize=16)\n",
    "plt.xlabel('Time (s)', fontsize=18)\n",
    "plt.yticks([], [])\n",
    "ax.margins(x=0)\n",
    "a,_ = plt.xticks()\n",
    "plt.xticks(a[:-1],a[:-1]/sr);\n",
    "IPython.display.Audio(audio)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can visually check the ground-truth file of the first sample by running the following commands. We can see that it has plenty of overlap between two speakers. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# display speaker labels for reference\n",
    "labels = rttm_to_labels(rttm)\n",
    "reference = labels_to_pyannote_object(labels)\n",
    "reference"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can check that corresponding RTTM files are generated as ground-truth labels for training and evaluation."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "!cat simulated_train/multispeaker_session_0.rttm | head -10"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Data preparation step 6: Check out the created files\n",
    "\n",
    "The following files are generated from data simulator:\n",
    "\n",
    "* _wav files_ (one per audio session) - the output audio sessions\n",
    "* _rttm files_ (one per audio session) - the speaker timestamps for the corresponding audio session (used for diarization training)\n",
    "* _list files_ (one per file type per batch of sessions) - a list of generated files of the given type (e.g., wav, rttm), used primarily for manifest creation\n",
    "\n",
    "Check if the files we need are generated by running the following commands."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print(\"\\n Training audio files:\")\n",
    "!ls simulated_train/*.wav\n",
    "print(\"\\n Training audio files:\")\n",
    "!ls simulated_train/*.rttm\n",
    "print(\"\\n Training RTTM list content:\")\n",
    "!cat simulated_train/synthetic_wav.list\n",
    "print(\"\\n Training RTTM list content:\")\n",
    "!cat simulated_train/synthetic_rttm.list\n",
    "\n",
    "print(\"\\n Validation audio files:\")\n",
    "!ls simulated_valid/*.wav\n",
    "print(\"\\n Validation audio files:\")\n",
    "!ls simulated_valid/*.rttm\n",
    "print(\"\\n Validation RTTM list content:\")\n",
    "!cat simulated_valid/synthetic_wav.list\n",
    "print(\"\\n Validation RTTM list content:\")\n",
    "!cat simulated_valid/synthetic_rttm.list"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Prepare Training Data for Sortformer diarizer"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now that we have datasets for both train and validation (dev), we can start preparing and cleaning the data samples for training. Make sure you have the following list of files:\n",
    "\n",
    "**Training set** \n",
    "\n",
    "- Train audio files `.wav`\n",
    "- A train audio list file `.list`\n",
    "- Train RTTM files `.rttm`\n",
    "- A train RTTM list content `.list`\n",
    "\n",
    "**Validation set**  \n",
    "\n",
    "- Validation audio files `.wav`\n",
    "- A validation audio list file `.list`\n",
    "- Validation RTTM files `.rttm`\n",
    "- A validation RTTM list file `.list`\n",
    "\n",
    "\n",
    "Based on these files, we need to create manifest files containing data samples we have. If you don't have a `.list` file, you need to create a `.list` file for the `.wav` files and `.rttm` files."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Create a NeMo manifest (.json) file for training dataset\n",
    "!python {NEMO_DIR_PATH}/scripts/speaker_tasks/pathfiles_to_diarize_manifest.py \\\n",
    "  --add_duration \\\n",
    "  --paths2audio_files='simulated_train/synthetic_wav.list' \\\n",
    "  --paths2rttm_files='simulated_train/synthetic_rttm.list' \\\n",
    "  --manifest_filepath='simulated_train/sortformer_train.json'\n",
    "\n",
    "# Create a NeMo manifest (.json) file for validation (dev) dataset\n",
    "!python {NEMO_DIR_PATH}/scripts/speaker_tasks/pathfiles_to_diarize_manifest.py \\\n",
    "  --add_duration \\\n",
    "  --paths2audio_files='simulated_valid/synthetic_wav.list' \\\n",
    "  --paths2rttm_files='simulated_valid/synthetic_rttm.list' \\\n",
    "  --manifest_filepath='simulated_valid/sortformer_valid.json'"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "If you print the content of the created manifest file, you can see that `.rttm` files in the list and `.wav` files are grouped together in the generated manifest files."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print(\"\\nTraining Dataset:\")\n",
    "!cat simulated_train/sortformer_train.json | tail -5\n",
    "print(\"\\nValidation Dataset:\")\n",
    "!cat simulated_valid/sortformer_valid.json | tail -5 "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Train a Sortformer Diarizer Model"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now that we have prepared all the necessary dataset, we can train an Sortformer diarizer model on the prepared dataset. Download YAML file for training form NeMo repository and load the configuration into `config` variable."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import nemo\n",
    "import os\n",
    "import lightning.pytorch as pl\n",
    "from omegaconf import OmegaConf\n",
    "from nemo.collections.asr.models import SortformerEncLabelModel\n",
    "from nemo.utils.exp_manager import exp_manager\n",
    "\n",
    "NEMO_ROOT = os.getcwd()\n",
    "!mkdir -p conf \n",
    "!wget -P conf https://raw.githubusercontent.com/NVIDIA/NeMo/{BRANCH}/examples/speaker_tasks/diarization/conf/neural_diarizer/sortformer_diarizer_hybrid_loss_4spk-v1.yaml\n",
    "MODEL_CONFIG = os.path.join(NEMO_ROOT,'conf/sortformer_diarizer_hybrid_loss_4spk-v1.yaml')\n",
    "config = OmegaConf.load(MODEL_CONFIG)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Setup the `manifest_filepath` for `train_ds` and `validation_ds` by feeding the `json` file paths based on the created training dataset."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "curr_dir = os.getcwd() + \"/\"\n",
    "config.model.train_ds.manifest_filepath = f'{curr_dir}simulated_train/sortformer_train.json'\n",
    "config.model.test_ds.manifest_filepath = f'{curr_dir}simulated_valid/sortformer_valid.json'\n",
    "config.model.validation_ds.manifest_filepath = f'{curr_dir}simulated_valid/sortformer_valid.json'\n",
    "config.trainer.strategy = \"ddp_notebook\"\n",
    "config.batch_size = 3\n",
    "\n",
    "config.trainer.devices=1\n",
    "config.accelerator=\"gpu\"\n",
    "print(os.getcwd())\n",
    "\n",
    "print(\"config.model.train_ds.manifest_filepath \", config.model.train_ds.manifest_filepath )"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Setup a model with the given configuration and start a training session."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "trainer = pl.Trainer(devices=1, accelerator='gpu', max_epochs=50,\n",
    "                  enable_checkpointing=False, logger=False,\n",
    "                  log_every_n_steps=5, check_val_every_n_epoch=10)\n",
    "\n",
    "exp_manager(trainer, config.get(\"exp_manager\", None))\n",
    "sortformer_model = SortformerEncLabelModel(cfg=config.model, trainer=trainer)\n",
    "sortformer_model.maybe_init_from_pretrained_checkpoint(config)\n",
    "trainer.fit(sortformer_model)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  },
  "pycharm": {
   "stem_cell": {
    "cell_type": "raw",
    "metadata": {
     "collapsed": false
    },
    "source": []
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}