File size: 15,009 Bytes
b386992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "675dbb2d-57bb-414c-bf7e-63dc6aa072a5",
   "metadata": {},
   "source": [
    "# Evaluating a NeMo checkpoint with lm-eval"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8d4e997c-cf60-45f4-bbd1-c71a1c221687",
   "metadata": {},
   "source": [
    "This notebook showcases how to evaluate a model with NeMo 2.0. It will guide you through the process of in-framework deployment, and evaluation of completions and chat endpoints.\n",
    "\n",
    "In this tutorial we will evaluate an LLM on the [MMLU benchmark](https://arxiv.org/abs/2009.03300).\n",
    "The benchmark measures a language model's general knowledge across 57 diverse subjects, ranging from humanities and social sciences to STEM and professional fields, using multiple-choice questions.\n",
    "We will use two variants of the benchmarks: a more general one, that can be used to evaluate both base and instruction-tuned models, and a chat variant, that requires instruction-following capabilities from the model.\n",
    "\n",
    "> NOTE: It is recommended to run this notebook inside a [NeMo Framework container](https://catalog.ngc.nvidia.com/orgs/nvidia/containers/nemo) which has all the required dependencies."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "64387183-fff3-4b40-ae7f-2dd83a719e25",
   "metadata": {},
   "outputs": [],
   "source": [
    "import requests\n",
    "import signal\n",
    "import subprocess\n",
    "\n",
    "from nemo.collections.llm import api\n",
    "from nemo.collections.llm.evaluation.api import EvaluationConfig, EvaluationTarget\n",
    "from nemo.collections.llm.evaluation.base import wait_for_fastapi_server\n",
    "from nemo.utils import logging\n",
    "\n",
    "logging.setLevel(logging.INFO)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fd220939-d4e6-45a8-930e-1ad1170ed1eb",
   "metadata": {},
   "source": [
    "## 1. Deploying the model"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1d4a74ae-460d-4a0b-b400-5238ad7febcc",
   "metadata": {},
   "source": [
    "First, you need to prepare a NeMo 2 checkpoint of the model you would like to evaluate. For the purpose of this tutorial, we will use Llama 3.2 1B Instruct checkpoint, which you can download from the [NGC Catalog](https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/llama-3_2-1b-instruct). Make sure to mount the directory containing the checkpoint when starting the container. In this tutorial, we assume that the checkpoint is available under `\"/checkpoints/llama-3_2-1b-instruct_v2.0\"` path.\n",
    "\n",
    "> NOTE: Some steps in this tutorial are **only available for instruction-tuned (chat) models**. If you are working with a base model instead, you can still evaluate it using the `completions` endpoint and the standard `mmlu` task."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "13c11c9a-a85e-4d85-a4a3-342bb0dafd1a",
   "metadata": {},
   "outputs": [],
   "source": [
    "# modify this variable to point to your checkpoint\n",
    "CHECKPOINT_PATH = \"/checkpoints/llama-3_2-1b-instruct_v2.0\"\n",
    "\n",
    "# if you are not using NeMo FW container, modify this path to point to scripts directory\n",
    "SCRIPTS_PATH = \"/opt/NeMo/scripts\"\n",
    "\n",
    "# modify this path if you would like to save results in a different directory\n",
    "WORKSPACE = \"/workspace\""
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fcf9a27f-da0f-4799-a17a-dcc9f5d3de7a",
   "metadata": {},
   "source": [
    "After downloading the model, we can deploy it for evaluation.\n",
    "The command below will start a server for the provided checkpoint in a separate process using the `deploy_in_fw_oai_server_eval.py` script.\n",
    "The script will deploy the model using the [Triton Inference Server](https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/index.html) and set up an OpenAI-like endpoints for querying it.\n",
    "\n",
    "If you would like to use multiple devices for the deployment, you can specify deployment parameters to distribute your model:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c24d2425-ab20-427c-a8ca-8961d0a6e1b5",
   "metadata": {},
   "outputs": [],
   "source": [
    "deploy_script = f\"{SCRIPTS_PATH}/deploy/nlp/deploy_in_fw_oai_server_eval.py\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "08563a68-b872-46b3-a965-dae2c2833be3",
   "metadata": {},
   "outputs": [],
   "source": [
    "!python {deploy_script} --help"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3e245c0c-0a12-40a9-ac62-e6e447e3c833",
   "metadata": {},
   "outputs": [],
   "source": [
    "deploy_process = subprocess.Popen(\n",
    "    ['python', deploy_script, '--nemo_checkpoint', CHECKPOINT_PATH],\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "79a0e537-39f7-41a0-bce0-65b7e1c2b8c6",
   "metadata": {},
   "source": [
    "The server exposes three endpoints:\n",
    "* `/v1/triton_health`\n",
    "* `/v1/completions/`\n",
    "* `/v1/chat/completions/`\n",
    "\n",
    "The `/v1/triton_health` allows you to check if the underlying Triton server is ready.\n",
    "The `/v1/completions/` endpoint allows you to send prompt to the model as-is, without applying the chat template. The model responds with a text completion.\n",
    "Finally, the `/v1/chat/completions/` endpoint allows for multi-turn conversational interactions with the model. This endpoint accepts a structured list of messages with different roles (system, user, assistant) to maintain context and generates chat-like responses. Under the hood, a chat template is applied to turn the conversation into a single input string.\n",
    "\n",
    "**Please note that the chat endpoint will not work correctly for base models, as they do not define a chat template.**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "bb3c1c12-f440-445f-ba1a-bbb0fa33e6d9",
   "metadata": {},
   "outputs": [],
   "source": [
    "base_url = \"http://0.0.0.0:8886\"\n",
    "model_name = \"triton_model\"\n",
    "\n",
    "completions_url = f\"{base_url}/v1/completions/\"\n",
    "chat_url = f\"{base_url}/v1/chat/completions/\""
   ]
  },
  {
   "cell_type": "markdown",
   "id": "afd41d1c-aeb4-4bf7-bcd3-40ef4837a64d",
   "metadata": {},
   "source": [
    "Deployment can take a couple of minutes, especially for larger models. We will check the server status and wait until it is ready:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c79e2ae8-758d-4bbc-b4a9-b65ea1140e27",
   "metadata": {},
   "outputs": [],
   "source": [
    "wait_for_fastapi_server(base_url)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9f6bc803-da74-4db6-bdda-1ffd6543e22c",
   "metadata": {},
   "source": [
    "After the model was deployed we can query it:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "bd43d967-1a9c-4716-84a0-e162262cea9e",
   "metadata": {},
   "outputs": [],
   "source": [
    "completions_payload = {\n",
    "    \"prompt\": \"My name is\",\n",
    "    \"model\": model_name,\n",
    "    \"max_tokens\": 16,\n",
    "}\n",
    "\n",
    "response = requests.post(completions_url, json=completions_payload)\n",
    "print(response.content.decode())"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5dfaa539-929b-4ad8-a03f-74e963a858dc",
   "metadata": {},
   "source": [
    "If you are working with a instruction-tuned model, you can also use the chat endpoint:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ab7251e4-6a26-439f-9b7b-8671692647a6",
   "metadata": {},
   "outputs": [],
   "source": [
    "chat_payload = {\n",
    "    \"messages\": [\n",
    "        {\"role\": \"user\", \"content\": \"What is your name?\"}\n",
    "    ],\n",
    "    \"model\": model_name,\n",
    "    \"max_tokens\": 64,\n",
    "}\n",
    "\n",
    "response = requests.post(chat_url, json=chat_payload)\n",
    "print(response.content.decode())"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4c2de593-23f2-4852-bd59-28932212ad64",
   "metadata": {},
   "source": [
    "## 2. Evaluating the completions endpoint"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "165bc6ad-aa4c-44a4-98ed-e24c11682d97",
   "metadata": {},
   "source": [
    "Now, we are ready to start the evaluation. First, we will evaluate the completions endpoint on the `mmlu` task.\n",
    "We will load a pre-defined configuration from [NVIDIA Evals Factory](https://pypi.org/project/nvidia-lm-eval/) lm-evaluation-harness.\n",
    "This configuration has a `--num_fewshot 5` flag specified, which means that each question to the model is prepended with five examples of question-answer pairs.\n",
    "This way, the model is guided on the correct way to format the output.\n",
    "\n",
    "For the purpose of this tutorial, we will only use one sample from each subset (by setting the `limit_samples` flag to 1).\n",
    "To run the full evaluation, remove this parameter from the command below.\n",
    "Alternatively, you can set the parameter to, for example, 0.1 to run the evaluation on 10% of the dataset.\n",
    "\n",
    "For more details on arguments in the EvaluationTarget and EvaluationConfig classes for evaluation, refer to [`nemo/collections/llm/evaluation/api.py`](https://github.com/NVIDIA/NeMo/blob/main/nemo/collections/llm/evaluation/api.py)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "843b60c8-b852-412f-a358-5d5b04c6f130",
   "metadata": {},
   "outputs": [],
   "source": [
    "target_config = EvaluationTarget(api_endpoint={\"url\": completions_url, \"type\": \"completions\"})\n",
    "eval_config = EvaluationConfig(\n",
    "    type=\"mmlu\",\n",
    "    params={\"limit_samples\": 1},\n",
    "    output_dir=f\"{WORKSPACE}/mmlu\",\n",
    ")\n",
    "\n",
    "completions_results = api.evaluate(target_cfg=target_config, eval_cfg=eval_config)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fae75bd0-1b3e-4c1a-b7bd-8fc2e4b5f39a",
   "metadata": {},
   "source": [
    "## 3. Evaluating the chat endpoint"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c4af0504-3462-4ccc-90b0-a3d50dcca0a8",
   "metadata": {},
   "source": [
    "Now, we will use a \"chat\" variant of the same benchmark, `mmlu_instruct`, for evaluating the chat endpoint.\n",
    "In this evaluation scenario, we do not send examples of questions and answers (0-shot setting) but instead provide an instruction to the model on how the output should be formatted.\n",
    "\n",
    "This variant of the benchmark is more challenging as it requires the model to not only provide the correct answer but also to format it according to the instruction.\n",
    "\n",
    "Again, we will only use one sample from each subset.\n",
    "You can modify this behavior by changing or removing the `limit_samples` parameter from the command below."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1e593329-a26c-4802-8cd6-33c6f1d78a74",
   "metadata": {},
   "outputs": [],
   "source": [
    "target_config = EvaluationTarget(api_endpoint={\"url\": chat_url, \"type\": \"chat\"})\n",
    "eval_config = EvaluationConfig(\n",
    "    type=\"mmlu_instruct\",\n",
    "    params={\"limit_samples\": 1},\n",
    "    output_dir=f\"{WORKSPACE}/mmlu_instruct\",\n",
    ")\n",
    "\n",
    "chat_results = api.evaluate(target_cfg=target_config, eval_cfg=eval_config)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "09c9bf0f-3a96-4e38-be21-159edf4c6bfa",
   "metadata": {},
   "source": [
    "# 4. Inspecting the results and shuting the server down"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9b56aa80-e0b7-4cba-9b93-df5d47898fd6",
   "metadata": {},
   "source": [
    "After the evaluation is finished, we can take a look at the results.\n",
    "We can compare the aggregated metrics or examine the scores for particular subtasks.\n",
    "\n",
    "It is often the case that results for the \"instruct\" variant are lower, as it requires strong instruction-following abilities from the model."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e2721e87-2573-4d58-91e1-dd563a80326c",
   "metadata": {},
   "outputs": [],
   "source": [
    "completions_results[\"groups\"][\"mmlu_str\"][\"metrics\"]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4ca8c371-e470-4f0b-9a5a-e756cc58ae7e",
   "metadata": {},
   "outputs": [],
   "source": [
    "chat_results[\"groups\"][\"mmlu_str\"][\"metrics\"]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b24c065c-4578-4233-89b3-6ddb26521bf6",
   "metadata": {},
   "outputs": [],
   "source": [
    "completions_results[\"tasks\"][\"mmlu_str_professional_medicine\"][\"metrics\"]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3eecf6a8-4171-4642-81b3-6381c28d1fc8",
   "metadata": {},
   "outputs": [],
   "source": [
    "chat_results[\"tasks\"][\"mmlu_str_professional_medicine\"][\"metrics\"]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5ceb940a-a07b-4af6-8f61-8ff173dc92c3",
   "metadata": {},
   "source": [
    "We can also examine the artifacts produced by both jobs.\n",
    "Inside the output directories, we can find `run_config.yml` files, which store details about the evaluation setup; `lm_cache_rank0.db`, file which contains a cache that can be used to resume an interrupted evaluation; and `triton_model` directory, which holds saved metrics as well as detailed logs for each input sample and its corresponding response."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "45279e09-1559-4529-96ca-23e87eaa2d79",
   "metadata": {},
   "outputs": [],
   "source": [
    "! ls {WORKSPACE}/mmlu*"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d6cdf62d-5b6d-40c5-bcd8-2b42654f4855",
   "metadata": {},
   "source": [
    "Finally we can close the model's server.\n",
    "It can be done by sending `SIGINT` signal to the deployment process."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4597fde8-f357-41fc-bf2b-4507d3bdca30",
   "metadata": {},
   "outputs": [],
   "source": [
    "deploy_process.send_signal(signal.SIGINT)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3911d24e-5300-4b26-bc95-1a92ae88d6e9",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}