File size: 22,834 Bytes
b386992 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "SUOXg71A3w78"
},
"outputs": [],
"source": [
"\"\"\"\n",
"You can run either this notebook locally (if you have all the dependencies and a GPU) or on Google Colab.\n",
"\n",
"Instructions for setting up Colab are as follows:\n",
"1. Open a new Python 3 notebook.\n",
"2. Import this notebook from GitHub (File -> Upload Notebook -> \"GITHUB\" tab -> copy/paste GitHub URL)\n",
"3. Connect to an instance with a GPU (Runtime -> Change runtime type -> select \"GPU\" for hardware accelerator)\n",
"4. Run this cell to set up dependencies.\n",
"5. Restart the runtime (Runtime -> Restart Runtime) for any upgraded packages to take effect\n",
"\n",
"\n",
"NOTE: User is responsible for checking the content of datasets and the applicable licenses and determining if suitable for the intended use.\n",
"\"\"\"\n",
"# If you're using Google Colab and not running locally, run this cell.\n",
"import os\n",
"\n",
"# # Install dependencies\n",
"!pip install wget\n",
"!apt-get install sox libsndfile1 ffmpeg\n",
"!pip install text-unidecode\n",
"!pip install matplotlib>=3.3.2\n",
"\n",
"## Install NeMo\n",
"BRANCH = 'main'\n",
"!python -m pip install git+https://github.com/NVIDIA/NeMo.git@$BRANCH#egg=nemo_toolkit[all]\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "RGNuJWr66C38"
},
"source": [
"# Automatic Speech Recognition with Transducer Models using HF Datasets\n",
"\n",
"We have discussed training various ASR models in NeMo using custom datasets, either for fine-tuning or for scratch-training. In this tutorial, we will showcase how to use Hugging Face datasets library in order to finetune a Transducer ASR model on a small dataset from for the Telugu language. \n",
"It includes discussions relevant to preparing datasets with HF and how to use them to finetune NeMo models. The same method applies to training from scratch. However, for training, we recommend using scripts directly from the `examples/asr/` folder.\n",
"\n",
"In this tutorial, we demonstrate the usage of HF datasets for the Telugu language, where we use the Fluers dataset for training, validation, and testing. However, the same procedure can be used for other languages or domains and finetuned for specific use cases accordingly. \n",
"\n",
"For scripts, refer to [speech_to_text_finetune.py]('https://github.com/NVIDIA/NeMo/blob/main/examples/asr/speech_to_text_finetune.py') for training from scratch. \n",
"\n",
"--------\n",
"\n",
"**Note**: It is assumed that the previous tutorial - \"Intro-to-Transducers\" has been reviewed, and there is some familiarity with the config components of transducer models."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "eAqCcJ-T6C6k"
},
"source": [
"# Preparing the dataset\n",
"\n",
"In this tutorial, we will be utilizing the `Telugu` language dataset part of fluers set. More details about dataset can be found at: https://huggingface.co/datasets/google/fleurs/viewer/te_in \n",
"\n",
"Dataset consists of 3 splits: `train`, `validation`, and `test`. We will use the `train` and `validation` splits for training and validation, respectively. The `test` split will be used for testing the model. Train set consists of 2,300 utterances and validation set consists of 311 examples. \n",
"\n",
"You may listen to some of the samples from the dataset using the following code:\n",
"\n",
"```python\n",
"\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import datasets\n",
"import IPython.display as ipd\n",
"# sample from the validation set\n",
"sample = datasets.load_dataset('google/fleurs', 'te_in', split='validation')[0]\n",
" \n",
"# Let's listen to the audio file and its transcription\n",
"ipd.Audio(sample['audio']['array'], rate=16000)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Lets look at the transcription\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"Transcription:\", sample['transcription'])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Audio samples are in the `audio` field and the corresponding transcriptions are in the `transcription` field. We will use these fields to prepare data and train our model.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Preparing tokenizer"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Since we are finetuning Parakeet model, which is an English language model, we need to update the tokenizer and update the decoder to support the new language. \n",
"\n",
"First, we will extract text transcriptions from the dataset and use them to train a tokenizer. We will use the scripts from NeMo first to get the data from HF dataset using `get_hf_dataset.py` script. Next we use `process_asr_text_tokenizer.py` script to prepare the tokenizer from [scripts](https://github.com/NVIDIA/NeMo/tree/main/scripts/tokenizers) folder. \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Download the `get_hf_text_data.py` script from the [scripts](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers) folder and run the following command to get the data from HF dataset. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "i2hD4LkoJvrx"
},
"outputs": [],
"source": [
"if not os.path.exists(\"scripts/get_hf_text_data.py\"):\n",
" !wget -P scripts/ https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/scripts/tokenizers/get_hf_text_data.py"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Major difference from NeMo dataset configs to training using HF-datasets is for using hf-datasets, users need to mention the hf-dataset information through hf data config and pass to the script for downloading necessary data. Users can switch to another dataset by changing necessary fields in the hf data config. \n",
"Let's create that config here."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from omegaconf import OmegaConf, open_dict\n",
"train_split = {\n",
" 'path': 'google/fleurs',\n",
" 'name': 'te_in',\n",
" 'split': 'train', # we will update this accordingly based on the split\n",
" 'streaming': False}\n",
"print(OmegaConf.to_yaml(train_split))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Since we need clean data for training tokenizer and models, we need to filter the data based on how dataset was constructed and how we would like the ASR model output to be. \n",
"\n",
"Based on prior analysis of text transcripts of the current hf dataset, we skip all non-alphanumeric characters except `full-stop` using `normalize_text` option of the `get_hf_text_data.py` script, based on `huggingface_data_tokenizer.yaml` config file. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"if not os.path.exists('configs/huggingface_data_tokenizer.yaml'):\n",
" !wget -P configs/ https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/scripts/tokenizers/conf/huggingface_data_tokenizer.yaml\n",
"\n",
"\n",
"!export HYDRA_FULL_ERROR=1;python scripts/get_hf_text_data.py \\\n",
" --config-path=\"../configs\" \\\n",
" --config-name=\"huggingface_data_tokenizer\" \\\n",
" normalize_text=True \\\n",
" symbols_to_keep=[\".\"] \\\n",
" text_key=\"transcription\" \\\n",
" output_file='telugu_train_corpus.txt' \\\n",
" +hf_data_cfg='[{train_split}]'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"From the above command, we were able to use the `huggingface_data_tokenizer.yaml` config file to download the data from HF dataset. The download data is saved to `telugu_train_corpus.txt` file, which we will use to train the tokenizer. Before that, let's look at some utterances from the normalized (preprocessed) text file."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"with open('telugu_train_corpus.txt', 'r') as f:\n",
" for i in range(5):\n",
" print(f.readline().strip())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As can be seen, there are characters from English and also numerical characters as well. For this tutorial we will retain those characters and prepare the tokenizer. But if you would like to filter out those characters, you can use your own function in the `get_hf_text_data.py` script to filter out the characters. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, we will use the `process_asr_text_tokenizer.py` script to prepare the tokenizer, for finetuning we can limit the vocab size to 256 for telugu language."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"if not os.path.exists(\"scripts/process_asr_text_tokenizer.py\"):\n",
" !wget -P scripts/ https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/scripts/tokenizers/process_asr_text_tokenizer.py\n",
"\n",
"# Now this downloads the text corpus of data to tokenizers script\n",
"VOCAB_SIZE = 256 # can be any value above 29\n",
"TOKENIZER_TYPE = \"spe\" # can be wpe or spe\n",
"SPE_TYPE = \"bpe\" # can be bpe or unigram\n",
"\n",
"# ------------------------------------------------------------------- #\n",
"!rm -r tokenizers/\n",
"\n",
"if not os.path.exists(\"tokenizers\"):\n",
" os.makedirs(\"tokenizers\")\n",
"\n",
"!python scripts/process_asr_text_tokenizer.py \\\n",
" --data_file='telugu_train_corpus.txt' \\\n",
" --data_root=\"tokenizers\" \\\n",
" --tokenizer=$TOKENIZER_TYPE \\\n",
" --spe_type=$SPE_TYPE \\\n",
" --no_lower_case \\\n",
" --log \\\n",
" --vocab_size=$VOCAB_SIZE"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "JHDZswN6LIBJ"
},
"outputs": [],
"source": [
"# Tokenizer path\n",
"if TOKENIZER_TYPE == 'spe':\n",
" TOKENIZER = os.path.join(\"tokenizers\", f\"tokenizer_spe_{SPE_TYPE}_v{VOCAB_SIZE}\")\n",
" TOKENIZER_TYPE_CFG = \"bpe\"\n",
"else:\n",
" TOKENIZER = os.path.join(\"tokenizers\", f\"tokenizer_wpe_v{VOCAB_SIZE}\")\n",
" TOKENIZER_TYPE_CFG = \"wpe\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(\"Tokenizers are saved at:\", TOKENIZER)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "j8tx2m2w6C87"
},
"source": [
"# Preparing a Transducer Model\n",
"\n",
"Now that we have the dataset and tokenizer prepared, let us begin by setting up the config of the Transducer model! In this tutorial, we will finetune [Parakeet RNNT 0.6B](https://huggingface.co/nvidia/parakeet-rnnt-0.6b) model, but the same procedure can be used for other RNNT models as well.\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "pQETBCSML0Us"
},
"source": [
"## Prepare the config \n",
"For finetuning the model, we need to update the config file to include the tokenizer and the dataset information. We will use the `parakeet-rnnt-6b` model and update the config file to include the tokenizer and the dataset information. For this we use `speech_to_text_hf_finetune.yaml` config file, and training script `speech_to_text_finetune.py` from the `examples/asr` folder.\n",
"\n",
"For this demo, we will replicate only a portion of the script - in order to show just the necessary components for training the model on single GPU. However, we recommend users to use the scripts directly from the `examples/asr` folder for training the model on multiple GPUs."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "6a_vedo0Lyo8"
},
"outputs": [],
"source": [
"## Grab the config we'll use in this example\n",
"!mkdir -p configs\n",
"if not os.path.exists('configs/speech_to_text_hf_finetune.yaml'):\n",
" !wget -P configs/ https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/examples/asr/conf/asr_finetune/speech_to_text_hf_finetune.yaml\n",
"\n",
"config = OmegaConf.load(\"configs/speech_to_text_hf_finetune.yaml\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Update tokenizer info"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"config.model.tokenizer.update_tokenizer = True\n",
"config.model.tokenizer.dir = TOKENIZER\n",
"config.model.tokenizer.type = TOKENIZER_TYPE_CFG\n",
"print(OmegaConf.to_yaml(config.model.tokenizer))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "N-t7fRl6GS3A"
},
"source": [
"Need to mention the same data preprocessing scripts here as HF datasets are processed batchwise and the same preprocessing scripts are used for applying the same preprocessing to the dataset, as was used for training the tokenizer. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "B9nY5JQaIhKz"
},
"outputs": [],
"source": [
"\n",
"config.model.train_ds.normalize_text=False\n",
"config.model.normalize_text = True # same as the normalize_text in the get_hf_text_data.py\n",
"config.model.symbols_to_keep=[\".\"] # same as the symbols_to_keep in the get_hf_text_data.py\n",
"config.model.data_path = 'google/fleurs'\n",
"config.model.data_name = 'te_in'\n",
"config.model.streaming = False\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "d0tyOaqNLq-4"
},
"source": [
"Setting up dataset config for validation and test datasets is similar to the training dataset."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "mJbqMEkjMTfM"
},
"outputs": [],
"source": [
"config.model.train_ds.hf_data_cfg=train_split\n",
"config.model.train_ds.text_key='transcription'\n",
"config.model.train_ds.batch_size=16 # change this based on your GPU memory.\n",
"config.model.train_ds.normalize_text=True\n",
"\n",
"config.model.validation_ds.hf_data_cfg=train_split\n",
"config.model.validation_ds.hf_data_cfg.split='validation' # updated this based on the split\n",
"config.model.validation_ds.text_key='transcription'\n",
"config.model.validation_ds.normalize_text=True\n",
"\n",
"config.model.test_ds.hf_data_cfg=train_split\n",
"config.model.test_ds.hf_data_cfg.split='test' # updated this based on the split\n",
"config.model.test_ds.text_key='transcription'\n",
"config.model.test_ds.normalize_text=True\n",
"\n",
"print(OmegaConf.to_yaml(config.model))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Update the trainer config to include the necessary parameters for training the model."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Training the model\n",
"\n",
"For finetuning the model, basic parameters we need to primarily focus on are optimizer, scheduler, learning rate and the number of steps to finetune.\n",
"\n",
"For this example we will stick to AdamW optimizer and CosineAnnealing scheduler, for 2500 steps. \n",
"These parameters can be updated based on the dataset and the model being used."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(OmegaConf.to_yaml(config.model.optim))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Current optim looks fine except for the warmup_steps\n",
"config.model.optim.sched.warmup_steps = 500 # 10% of the total steps\n",
"config.model.optim.lr = 3e-4\n",
"\n",
"del config.model.spec_augment #For this example, we are not using SpecAugment"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's load the model and also the dataloader for training the model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Unv8-GvOWhad"
},
"outputs": [],
"source": [
"from nemo.collections.asr.models import ASRModel\n",
"asr_model=ASRModel.from_pretrained('nvidia/parakeet-rnnt-0.6b')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"After loading the pretrained model, decoder of the model needs to updated to support the new language."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"decoder=asr_model.decoder.state_dict()\n",
"joint_state = asr_model.joint.state_dict()\n",
"prev_vocab_size = asr_model.tokenizer.vocab_size\n",
"asr_model.change_vocabulary(new_tokenizer_dir=TOKENIZER, new_tokenizer_type=TOKENIZER_TYPE_CFG)\n",
"if asr_model.tokenizer.vocab_size == prev_vocab_size: # checking new tokenizer vocab size\n",
" asr_model.decoder.load_state_dict(decoder)\n",
" asr_model.joint.load_state_dict(joint_state)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Loading dataloaders"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "VsunP99saF5c"
},
"outputs": [],
"source": [
"from nemo.utils import logging, model_utils\n",
"cfg = model_utils.convert_model_config_to_dict_config(config)\n",
"asr_model.setup_training_data(cfg.model.train_ds)\n",
"asr_model.setup_validation_data(cfg.model.validation_ds)\n",
"if hasattr(cfg.model, 'test_ds') and cfg.model.test_ds.manifest_filepath is not None:\n",
" asr_model.setup_test_data(cfg.model.test_ds)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "yT1vJH9OkS0u"
},
"outputs": [],
"source": [
"# We will also reduce the hidden dimension of the joint and the prediction networks to preserve some memory\n",
"asr_model.setup_optimization(cfg.model.optim)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "SH4ZfXHOdGhX"
},
"source": [
"------\n",
"\n",
"Setup a Pytorch Lightning Trainer:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can reduce the number of steps to 5000 for this small dataset.\n",
"and also update precision to float16 for faster training. # Change this bf16 training on Ampere based GPUs. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Fmf0iSY-a6LC"
},
"outputs": [],
"source": [
"import torch\n",
"from lightning.pytorch import Trainer\n",
"\n",
"if torch.cuda.is_available():\n",
" accelerator = 'gpu'\n",
"else:\n",
" accelerator = 'gpu'\n",
"\n",
"MAX_STEPS = 5000\n",
"\n",
"# Initialize a Trainer for the Transducer model\n",
"trainer = Trainer(devices=1, accelerator=accelerator, max_epochs=-1, max_steps=MAX_STEPS,\n",
" enable_checkpointing=False, logger=False,\n",
" log_every_n_steps=100, check_val_every_n_epoch=10, precision='bf16')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "RheLsmA1cRz0"
},
"outputs": [],
"source": [
"# Build the model\n",
"trainer.fit(asr_model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Once trained users can save the model and use it for inference."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"asr_model.save_to(\"telugu_asr_model.nemo\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Running inference on a sample from the test dataset"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"del asr_model\n",
"asr_model = ASRModel.restore_from(\"telugu_asr_model.nemo\")\n",
"\n",
"!rm -r telugu_asr_model.nemo # remove the model to save space\n",
"\n",
"# Let's test the model on a sample from the test set\n",
"sample = datasets.load_dataset('google/fleurs', 'te_in', split='test')[0]\n",
"transcription = sample['transcription']\n",
"\n",
"# Let's listen to the audio file and its transcription\n",
"ipd.Audio(sample['audio']['array'], rate=16000)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"asr_model.eval()\n",
"# save audio file to disk\n",
"audio_path = \"sample.wav\"\n",
"import soundfile as sf\n",
"sf.write(audio_path, sample['audio']['array'], 16000)\n",
"transcription = asr_model.transcribe([audio_path])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"print(\"Predicted:\", transcription[0])\n",
"print(\"Target:\", sample['transcription'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"os.remove(audio_path) # remove the audio file to save space"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"collapsed_sections": [
"V5sMoFHmVvhg"
],
"name": "ASR-with-Transducers.ipynb",
"provenance": [],
"toc_visible": true
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|