File size: 30,721 Bytes
b386992 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 |
{
"cells": [
{
"cell_type": "markdown",
"id": "a3570803-9bfa-4e97-9891-5ae0759eb8ca",
"metadata": {},
"source": [
"# Hybrid ASR-TTS Models Tutorial"
]
},
{
"cell_type": "markdown",
"id": "50fc294f-f319-4465-8f90-a28b49843e60",
"metadata": {},
"source": [
"This tutorial is intended to introduce you to using ASR-TTS Hybrid Models, also known as `ASRWithTTSModel`, to finetune existing ASR models using an integrated text-to-mel-spectrogram generator. "
]
},
{
"cell_type": "markdown",
"id": "d2a01ca5-bd48-4d82-a97d-5b07a7b27ca0",
"metadata": {},
"source": [
"## ASR-TTS Models: Description"
]
},
{
"cell_type": "markdown",
"id": "b32467a9-c458-4590-aff7-e8d1e91b0870",
"metadata": {},
"source": [
"### Problem\n",
"\n",
"Adapting ASR models to a new text domain is a challenging task. Modern end-to-end systems can require several hundreds and thousands of hours to perform recognition with high accuracy. Acquiring audio-text paired data for a specific domain can be prohibitively expensive. Text-only data, on the other side, is widely available. \n",
"\n",
"One of the approaches for efficient adaptation is synthesizing audio data from text and using such data for training the ASR model conventionally. We modify this approach, incorporating TTS and ASR systems into a single model. We use only a lightweight multi-speaker text-to-mel-spectrogram generator (without vocoder) with an optional enhancer that mitigates the mismatch between natural and synthetic spectrograms.\n",
"\n",
"### Architecture\n",
"\n",
"<img width=\"400px\" height=\"auto\"\n",
" src=\"https://github.com/NVIDIA/NeMo/blob/stable/docs/source/asr/images/hybrid_asr_tts_model.png?raw=true\"\n",
" alt=\"ASR-TTS model architecture\"\n",
" style=\"float: right; margin-left: 20px;\">\n",
"\n",
"`ASRWithTTSModel` is a transparent wrapper for three models:\n",
"- ASR model (`EncDecCTCModelBPE`, `EncDecRNNTBPEModel` or `EncDecHybridRNNTCTCBPEModel` are supported)\n",
"- frozen text-to-mel-spectrogram model (currently, only `FastPitch` model is supported)\n",
"- optional frozen enhancer model\n",
"\n",
"The architecture is shown in the figure. \n",
"\n",
"The model can take text or audio as input during training. In the case of audio input, a mel spectrogram is extracted as usual and passed to the ASR neural network. In the case of textual input, the mel spectrogram generator produces a spectrogram on the fly from the text. The spectrogram is improved by the enhancer (if present) and fed into the ASR model. \n",
"\n",
"### Capabilities and Limitations\n",
"\n",
"This approach can be used to finetune the pretrained ASR model using text-only data. Training new models from scratch is also possible. The text should contain phrases and sentences and be split into sentences (~45 words maximum, corresponding to ~16.7 seconds of synthesized audio). Using only separate words is not recommended since this doesn't allow to adapt ASR model adapts to recognize new words in context. \n",
"\n",
"Mixing audio-text pairs with text-only data from the original domain is recommended to preserve performance on the original data. \n",
"Also, fusing BatchNorm (see parameters below) is recommended for the best performance when using a large proportion of text compared to the amount of audio-text pairs in finetuning process.\n",
"\n",
"\n",
"### Implementation Details and Experiments\n",
"\n",
"Further details about implementation and experiments can be found in the paper [Text-only domain adaptation for end-to-end ASR using integrated text-to-mel-spectrogram generator](https://arxiv.org/abs/2302.14036)\n"
]
},
{
"cell_type": "markdown",
"id": "2702d081-c675-4a96-8263-6059e310d048",
"metadata": {},
"source": [
"## Example: Finetuning ASR Model Using Text-Only Data"
]
},
{
"cell_type": "markdown",
"id": "30fe41a3-f36c-4803-a7f0-4260fb111478",
"metadata": {},
"source": [
"In this example, we will finetune a pretrained small Conformer-CTC model using text-only data from the AN4 dataset. [AN4 dataset](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/asr/datasets.html#an4-dataset) is a small dataset that consists of sentences of people spelling out addresses, names, and other entities.\n",
"\n",
"The model is pretrained on LibriSpeech data and performs poorly on AN4 data (`~17.7%` WER on test data).\n",
"We will use only text from the train part to construct text-only training data for our model and will achieve a good performance on the test part of the AN4 dataset (`~2%` WER)."
]
},
{
"cell_type": "markdown",
"id": "923819bb-7822-412a-8f9b-98c76c70e0bb",
"metadata": {},
"source": [
"You can run either this notebook locally (if you have all the dependencies and a GPU) or on Google Colab.\n",
"\n",
"Instructions for setting up Colab are as follows:\n",
"1. Open a new Python 3 notebook.\n",
"2. Import this notebook from GitHub (File -> Upload Notebook -> \"GITHUB\" tab -> copy/paste GitHub URL)\n",
"3. Connect to an instance with a GPU (Runtime -> Change runtime type -> select \"GPU\" for hardware accelerator)\n",
"4. Run the following cell to set up dependencies.\n",
"\n",
"NOTE: The user is responsible for checking the content of datasets and the applicable licenses and determining if they are suitable for the intended use."
]
},
{
"cell_type": "markdown",
"id": "4685a9da-b3f8-4b95-ba74-64a114223233",
"metadata": {},
"source": [
"### Install Dependencies"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4d22d241-6c46-492c-99db-3bd69777243c",
"metadata": {},
"outputs": [],
"source": [
"try:\n",
" import google.colab\n",
"\n",
" IN_COLAB = True\n",
"except (ImportError, ModuleNotFoundError):\n",
" IN_COLAB = False"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "dc38a961-8822-4685-89ae-ab6f591f9c28",
"metadata": {},
"outputs": [],
"source": [
"BRANCH = 'main'"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cd60b1c4-7b1d-421d-9d63-95d7458bbcbd",
"metadata": {},
"outputs": [],
"source": [
"# If you're using Google Colab and not running locally, run this cell.\n",
"\n",
"if IN_COLAB:\n",
" ## Install dependencies\n",
" !pip install wget\n",
" !apt-get install sox libsndfile1 ffmpeg\n",
" !pip install text-unidecode\n",
"\n",
" ## Install NeMo\n",
" !python -m pip install git+https://github.com/NVIDIA/NeMo.git@$BRANCH#egg=nemo_toolkit[all]"
]
},
{
"cell_type": "markdown",
"id": "08f99618-6f83-44b3-bc8e-f7df04fc471c",
"metadata": {},
"source": [
"### Import necessary libraries and utils"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "74f780b1-9b72-4acf-bcf0-64e1ce84e76d",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from pathlib import Path\n",
"import string\n",
"import tempfile\n",
"\n",
"from omegaconf import OmegaConf\n",
"import lightning.pytorch as pl\n",
"import torch\n",
"from tqdm.auto import tqdm\n",
"import wget\n",
"\n",
"from nemo.collections.asr.models import EncDecCTCModelBPE\n",
"from nemo.collections.asr.models.hybrid_asr_tts_models import ASRWithTTSModel\n",
"from nemo.collections.asr.parts.utils.manifest_utils import read_manifest, write_manifest\n",
"from nemo.collections.tts.models import FastPitchModel, SpectrogramEnhancerModel\n",
"from nemo.utils.notebook_utils import download_an4\n",
"\n",
"try:\n",
" from nemo_text_processing.text_normalization.normalize import Normalizer\n",
"except ModuleNotFoundError:\n",
" raise ModuleNotFoundError(\n",
" \"The package `nemo_text_processing` was not installed in this environment. Please refer to\"\n",
" \" https://github.com/NVIDIA/NeMo-text-processing and install this package before using \"\n",
" \"this script\"\n",
" )"
]
},
{
"cell_type": "markdown",
"id": "ca928d36-fb0d-439b-bac0-299e98a72d02",
"metadata": {},
"source": [
"### Prepare Data"
]
},
{
"cell_type": "markdown",
"id": "702e8e92-17b2-4f34-a2d9-c72b94501bf5",
"metadata": {},
"source": [
"Download and preprocess AN4 data."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "62c7cfec-aa98-4fc5-8b31-23ee1d59f311",
"metadata": {},
"outputs": [],
"source": [
"DATASETS_DIR = Path(\"./datasets\") # directory for data\n",
"CHECKPOINTS_DIR = Path(\"./checkpoints/\") # directory for checkpoints"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "659db73e-dcd7-455c-8140-20e104d6ac00",
"metadata": {},
"outputs": [],
"source": [
"# create directories if necessary\n",
"DATASETS_DIR.mkdir(parents=True, exist_ok=True)\n",
"CHECKPOINTS_DIR.mkdir(parents=True, exist_ok=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "36830e7f-5293-4401-8c56-780127b47385",
"metadata": {},
"outputs": [],
"source": [
"download_an4(data_dir=f\"{DATASETS_DIR}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e77f5062-9acb-4f39-b811-a5b11dd6f76f",
"metadata": {},
"outputs": [],
"source": [
"AN4_DATASET = DATASETS_DIR / \"an4\""
]
},
{
"cell_type": "markdown",
"id": "403b63b0-8aab-43aa-a455-31f588d1772f",
"metadata": {},
"source": [
"### Construct text-only training data"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "35654ee1-3869-4289-bd52-15818c0ccf69",
"metadata": {},
"outputs": [],
"source": [
"# read original training data\n",
"an4_train_data = read_manifest(AN4_DATASET / \"train_manifest.json\")"
]
},
{
"cell_type": "markdown",
"id": "a17f583c-2a5c-4faf-84bd-eb04c2921e01",
"metadata": {},
"source": [
"Text-only manifest should contain three fields:\n",
"- `text`: target text for the ASR model\n",
"- `tts_text`: text to use as a source for the TTS model (unnormalized)\n",
"- `tts_text_normalized`: text to use as a source for TTS model (normalized)\n",
"\n",
"If `tts_text_normalized` is not present, `tts_text` will be used, and normalization will be done when loading the dataset.\n",
"It is highly recommended to normalize the text and manually create the `tts_text_normalized` field since current normalizers are unsuitable for processing a large amount of text on the fly."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5938a8c2-e239-4a45-a716-dc11a981aec7",
"metadata": {},
"outputs": [],
"source": [
"# fill `text` and `tts_text` fields with the source data\n",
"textonly_data = []\n",
"for record in an4_train_data:\n",
" text = record[\"text\"]\n",
" textonly_data.append({\"text\": text, \"tts_text\": text})"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7f6a5735-a5c2-4a8b-8116-bfc535a2c299",
"metadata": {},
"outputs": [],
"source": [
"WHITELIST_URL = (\n",
" \"https://raw.githubusercontent.com/NVIDIA/NeMo-text-processing/main/\"\n",
" \"nemo_text_processing/text_normalization/en/data/whitelist/lj_speech.tsv\"\n",
")\n",
"\n",
"\n",
"def get_normalizer() -> Normalizer:\n",
" with tempfile.TemporaryDirectory() as data_dir:\n",
" whitelist_path = Path(data_dir) / \"lj_speech.tsv\"\n",
" if not whitelist_path.exists():\n",
" wget.download(WHITELIST_URL, out=str(data_dir))\n",
"\n",
" normalizer = Normalizer(\n",
" lang=\"en\",\n",
" input_case=\"cased\",\n",
" whitelist=str(whitelist_path),\n",
" overwrite_cache=True,\n",
" cache_dir=None,\n",
" )\n",
" return normalizer"
]
},
{
"cell_type": "markdown",
"id": "dd0253aa-d7f1-47ee-a142-099b71241270",
"metadata": {},
"source": [
"Сonstruct the `tts_text_normalized` field by applying an English normalizer to the text.\n",
"\n",
"AN4 data doesn't contain numbers, currency, and other entities, so the normalizer is used here only for demonstration purposes."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "27bb29d5-d44d-4026-98f8-5f0b1241b39a",
"metadata": {},
"outputs": [],
"source": [
"normalizer = get_normalizer()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9400e6d3-ba92-442a-8dd4-117e95dce2ea",
"metadata": {},
"outputs": [],
"source": [
"for record in tqdm(textonly_data):\n",
" record[\"tts_text_normalized\"] = normalizer.normalize(\n",
" record[\"tts_text\"], verbose=False, punct_pre_process=True, punct_post_process=True\n",
" )"
]
},
{
"cell_type": "markdown",
"id": "30a934b0-9b58-4bad-bb9a-ab78d81c3859",
"metadata": {},
"source": [
"Save manifest"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1833ac15-1750-4468-88bc-2343fbabe4d8",
"metadata": {},
"outputs": [],
"source": [
"write_manifest(AN4_DATASET / \"train_text_manifest.json\", textonly_data)"
]
},
{
"cell_type": "markdown",
"id": "fa3a2371-8c78-4dd1-9605-a668adf52b4a",
"metadata": {},
"source": [
"### Save pretrained checkpoints"
]
},
{
"cell_type": "markdown",
"id": "7eb14117-8b8b-4170-ab8c-ce496522a361",
"metadata": {},
"source": [
"Firstly we will load pretrained models from NGC and save them as `nemo` checkpoints. \n",
"Our hybrid model will be constructed from these checkpoints.\n",
"We will use:\n",
"- small Conformer-CTC ASR model trained on LibriSpeech data (for finetuning)\n",
"- multi-speaker TTS FastPitch model is trained on LibriTTS data. Spectrogram parameters for this model are the same as those used in the ASR model\n",
"- enhancer, which is trained adversarially on the output of the TTS model and natural spectrograms"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "43c5c75a-b6e0-4b3c-ad26-a07b483d84e6",
"metadata": {},
"outputs": [],
"source": [
"ASR_MODEL_PATH = CHECKPOINTS_DIR / \"stt_en_conformer_ctc_small_ls.nemo\"\n",
"TTS_MODEL_PATH = CHECKPOINTS_DIR / \"fastpitch.nemo\"\n",
"ENHANCER_MODEL_PATH = CHECKPOINTS_DIR / \"enhancer.nemo\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "40976e22-7a7b-42b2-86a1-9eaaef4c1c22",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# asr model: stt_en_conformer_ctc_small_ls\n",
"asr_model = EncDecCTCModelBPE.from_pretrained(model_name=\"stt_en_conformer_ctc_small_ls\")\n",
"asr_model.save_to(f\"{ASR_MODEL_PATH}\")\n",
"\n",
"# tts model: tts_en_fastpitch_for_asr_finetuning\n",
"tts_model = FastPitchModel.from_pretrained(model_name=\"tts_en_fastpitch_for_asr_finetuning\")\n",
"tts_model.save_to(f\"{TTS_MODEL_PATH}\")\n",
"\n",
"# enhancer model: tts_en_spectrogram_enhancer_for_asr_finetuning\n",
"enhancer_model = SpectrogramEnhancerModel.from_pretrained(model_name=\"tts_en_spectrogram_enhancer_for_asr_finetuning\")\n",
"enhancer_model.save_to(f\"{ENHANCER_MODEL_PATH}\")"
]
},
{
"cell_type": "markdown",
"id": "32d1e242-0ab0-43bf-aaa0-997d284c2c1b",
"metadata": {},
"source": [
"### Construct hybrid ASR-TTS model "
]
},
{
"cell_type": "markdown",
"id": "2210eb07-6d44-44e0-a0ad-866f1e89873a",
"metadata": {},
"source": [
"#### Config Parameters\n",
"\n",
"`Hybrid ASR-TTS model` consists of three parts:\n",
"\n",
"* ASR model (``EncDecCTCModelBPE``, ``EncDecRNNTBPEModel`` or ``EncDecHybridRNNTCTCBPEModel``)\n",
"* TTS Mel Spectrogram Generator (currently, only `FastPitch` model is supported)\n",
"* Enhancer model (optional)\n",
"\n",
"Also, the config allows to specify a text-only dataset.\n",
"\n",
"Main parts of the config:\n",
"\n",
"* ASR model\n",
" * ``asr_model_path``: path to the ASR model checkpoint (`.nemo`) file, loaded only once, then the config of the ASR model is stored in the ``asr_model`` field\n",
" * ``asr_model_type``: needed only when training from scratch. ``rnnt_bpe`` corresponds to ``EncDecRNNTBPEModel``, ``ctc_bpe`` to ``EncDecCTCModelBPE``, ``hybrid_rnnt_ctc_bpe`` to ``EncDecHybridRNNTCTCBPEModel``\n",
" * ``asr_model_fuse_bn``: fusing BatchNorm in the pretrained ASR model, can improve quality in finetuning scenario\n",
"* TTS model\n",
" * ``tts_model_path``: path to the pretrained TTS model checkpoint (`.nemo`) file, loaded only once, then the config of the model is stored in the ``tts_model`` field\n",
"* Enhancer model\n",
" * ``enhancer_model_path``: optional path to the enhancer model. Loaded only once, the config is stored in the ``enhancer_model`` field\n",
"* ``train_ds``\n",
" * ``text_data``: properties related to text-only data\n",
" * ``manifest_filepath``: path (or paths) to text-only dataset manifests\n",
" * ``speakers_filepath``: path (or paths) to the text file containing speaker ids for the multi-speaker TTS model (speakers are sampled randomly during training)\n",
" * ``min_words`` and ``max_words``: parameters to filter text-only manifests by the number of words\n",
" * ``tokenizer_workers``: number of workers for initial tokenization (when loading the data). ``num_CPUs / num_GPUs`` is a recommended value.\n",
" * ``asr_tts_sampling_technique``, ``asr_tts_sampling_temperature``, ``asr_tts_sampling_probabilities``: sampling parameters for text-only and audio-text data (if both specified). Correspond to ``sampling_technique``, ``sampling_temperature``, and ``sampling_probabilities`` parameters of the `nemo.collections.common.data.dataset.ConcatDataset`.\n",
" * all other components are similar to conventional ASR models\n",
"* ``validation_ds`` and ``test_ds`` correspond to the underlying ASR model"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4d6dd499-d388-4ee3-9a01-d739b16e6ad7",
"metadata": {},
"outputs": [],
"source": [
"# load config\n",
"!wget -P configs/ https://raw.githubusercontent.com/NVIDIA/NeMo/$BRANCH/examples/asr/conf/asr_tts/hybrid_asr_tts.yaml"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d6701dc8-cb3b-44cc-aab5-fb6e2c1dadb5",
"metadata": {},
"outputs": [],
"source": [
"config = OmegaConf.load(\"./configs/hybrid_asr_tts.yaml\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c13b3c96-4074-415f-95d2-17569886bfcd",
"metadata": {},
"outputs": [],
"source": [
"NUM_EPOCHS = 10"
]
},
{
"cell_type": "markdown",
"id": "4d090c5d-44a7-401a-a753-b8779b1c1e0b",
"metadata": {},
"source": [
"We will use all available speakers (sampled uniformly)."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1c41e5e8-d926-4b83-8725-bae5a82121cf",
"metadata": {},
"outputs": [],
"source": [
"TTS_SPEAKERS_PATH = Path(\"./checkpoints/speakers.txt\")\n",
"\n",
"with open(TTS_SPEAKERS_PATH, \"w\", encoding=\"utf-8\") as f:\n",
" for speaker_id in range(tts_model.cfg.n_speakers):\n",
" print(speaker_id, file=f)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9c07c07c-cb15-4a1c-80bf-20eaffaa65d9",
"metadata": {},
"outputs": [],
"source": [
"config.model.asr_model_path = ASR_MODEL_PATH\n",
"config.model.tts_model_path = TTS_MODEL_PATH\n",
"config.model.enhancer_model_path = ENHANCER_MODEL_PATH\n",
"\n",
"# fuse BathNorm automatically in Conformer for better performance\n",
"config.model.asr_model_fuse_bn = True\n",
"\n",
"# training data\n",
"# constructed dataset\n",
"config.model.train_ds.text_data.manifest_filepath = str(AN4_DATASET / \"train_text_manifest.json\")\n",
"# speakers for TTS model\n",
"config.model.train_ds.text_data.speakers_filepath = f\"{TTS_SPEAKERS_PATH}\"\n",
"config.model.train_ds.manifest_filepath = None # audio-text pairs - we don't use them here\n",
"config.model.train_ds.batch_size = 8\n",
"\n",
"# validation data\n",
"config.model.validation_ds.manifest_filepath = str(AN4_DATASET / \"test_manifest.json\")\n",
"config.model.validation_ds.batch_size = 8\n",
"\n",
"config.trainer.max_epochs = NUM_EPOCHS\n",
"\n",
"config.trainer.devices = 1\n",
"config.trainer.strategy = 'auto' # use 1 device, no need for ddp strategy\n",
"\n",
"OmegaConf.resolve(config)"
]
},
{
"cell_type": "markdown",
"id": "8ae6cb2e-f571-4b53-8897-bb8ba0fc1146",
"metadata": {},
"source": [
"#### Construct trainer and ASRWithTTSModel"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ac4ae885-dec4-4ce9-8f69-a1f35d04b08c",
"metadata": {},
"outputs": [],
"source": [
"trainer = pl.Trainer(**config.trainer)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8f815762-b08d-4d3c-8fd3-61afa511eab4",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"hybrid_model = ASRWithTTSModel(config.model)"
]
},
{
"cell_type": "markdown",
"id": "ca2c1bf2-28a9-4902-9c73-d96e04b21a46",
"metadata": {},
"source": [
"#### Validate the model\n",
"\n",
"Expect `~17.7%` WER on the AN4 test data."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ffa5f5c6-0609-4f46-aa0c-747319035417",
"metadata": {},
"outputs": [],
"source": [
"trainer.validate(hybrid_model)"
]
},
{
"cell_type": "markdown",
"id": "701ee9c7-91a1-4917-bf7d-ab26b625c7bf",
"metadata": {},
"source": [
"#### Train the model"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f79761c9-b882-4f14-911f-4a960ff81554",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"trainer.fit(hybrid_model)"
]
},
{
"cell_type": "markdown",
"id": "eac18c7c-bdcb-40ad-9c50-37f89fb4aa2a",
"metadata": {},
"source": [
"#### Validate the model after training\n",
"\n",
"Expect `~2%` WER on the AN4 test data."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cd927e87-13fb-4b61-8b4a-a6850780f605",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"trainer.validate(hybrid_model)"
]
},
{
"cell_type": "markdown",
"id": "6d25a77d-35ed-44b5-9ef5-318afa321acf",
"metadata": {},
"source": [
"### Save final model. Extract pure ASR model"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0f53ebd3-b89a-47e4-a0a5-ed3a3572f7c1",
"metadata": {},
"outputs": [],
"source": [
"# save full model: the model can be further used for finetuning\n",
"hybrid_model.save_to(\"checkpoints/finetuned_hybrid_model.nemo\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f0560c2c-af28-4d8f-b36d-c18ec6a482a8",
"metadata": {},
"outputs": [],
"source": [
"# extract the resulting ASR model from the hybrid model\n",
"hybrid_model.save_asr_model_to(\"checkpoints/finetuned_asr_model.nemo\")"
]
},
{
"cell_type": "markdown",
"id": "2de58fbb-50be-42cd-9095-01cacfdb6931",
"metadata": {},
"source": [
"## Using Scripts (examples)"
]
},
{
"cell_type": "markdown",
"id": "86655198-b1fc-4615-958c-7c01f3cbd024",
"metadata": {},
"source": [
"`<NeMo_git_root>/examples/asr/asr_with_tts/` contains scripts for finetuning existing models and training new models from scratch."
]
},
{
"cell_type": "markdown",
"id": "b5837536-8280-475c-a581-caaee00edfca",
"metadata": {},
"source": [
"### Finetuning Existing Model"
]
},
{
"cell_type": "markdown",
"id": "84df9aeb-3b5e-41fc-a8d0-dfc660e71375",
"metadata": {},
"source": [
"To finetune existing ASR model using text-only data use `<NeMo_git_root>/examples/asr/asr_with_tts/speech_to_text_bpe_with_text_finetune.py` script with the corresponding config `<NeMo_git_root>/examples/asr/conf/asr_tts/hybrid_asr_tts.yaml`.\n",
"\n",
"Please specify paths to all the required models (ASR, TTS, and Enhancer checkpoints), along with `train_ds.text_data.manifest_filepath` and `train_ds.text_data.speakers_filepath`."
]
},
{
"cell_type": "markdown",
"id": "78b9028c-02ce-4af4-b510-a431f4a2f62b",
"metadata": {},
"source": [
"```shell\n",
"python speech_to_text_bpe_with_text_finetune.py \\\n",
" model.asr_model_path=<path to ASR model> \\\n",
" model.tts_model_path=<path to compatible TTS model> \\\n",
" model.enhancer_model_path=<optional path to enhancer model> \\\n",
" model.asr_model_fuse_bn=<true recommended if ConformerEncoder with BatchNorm, false otherwise> \\\n",
" model.train_ds.manifest_filepath=<path to manifest with audio-text pairs or null> \\\n",
" model.train_ds.text_data.manifest_filepath=<path(s) to manifest with train text> \\\n",
" model.train_ds.text_data.speakers_filepath=<path(s) to speakers list> \\\n",
" model.train_ds.text_data.tokenizer_workers=4 \\\n",
" model.validation_ds.manifest_filepath=<path to validation manifest> \\\n",
" model.train_ds.batch_size=<batch_size>\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "0b17c097-a3b1-49a3-8f54-f07b94218d0b",
"metadata": {},
"source": [
"### Training a New Model from Scratch"
]
},
{
"cell_type": "markdown",
"id": "6d75b928-57b3-4180-bd09-37e018eef7ef",
"metadata": {},
"source": [
"```shell\n",
"python speech_to_text_bpe_with_text.py \\\n",
" # (Optional: --config-path=<path to dir of configs> --config-name=<name of config without .yaml>) \\\n",
" ++asr_model_type=<rnnt_bpe, ctc_bpe or hybrid_rnnt_ctc_bpe> \\\n",
" ++tts_model_path=<path to compatible tts model> \\\n",
" ++enhancer_model_path=<optional path to enhancer model> \\\n",
" model.tokenizer.dir=<path to tokenizer> \\\n",
" model.tokenizer.type=\"bpe\" \\\n",
" model.train_ds.manifest_filepath=<path(s) to manifest with audio-text pairs or null> \\\n",
" ++model.train_ds.text_data.manifest_filepath=<path(s) to manifests with train text> \\\n",
" ++model.train_ds.text_data.speakers_filepath=<path(s) to speakers list> \\\n",
" ++model.train_ds.text_data.min_words=1 \\\n",
" ++model.train_ds.text_data.max_words=45 \\\n",
" ++model.train_ds.text_data.tokenizer_workers=4 \\\n",
" model.validation_ds.manifest_filepath=<path(s) to val/test manifest> \\\n",
" model.train_ds.batch_size=<batch size> \\\n",
" trainer.max_epochs=<num epochs> \\\n",
" trainer.num_nodes=<number of nodes> \\\n",
" trainer.accumulate_grad_batches=<grad accumultion> \\\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "01c17712-ae8d-49cb-ade1-ded168676e27",
"metadata": {},
"source": [
"## Training TTS Models for ASR Finetuning"
]
},
{
"cell_type": "markdown",
"id": "422dc3b2-d29f-4ed0-b4d2-6d32b35dfb7b",
"metadata": {},
"source": [
"### TTS Model (FastPitch)\n",
"\n",
"TTS model for the purpose of ASR model finetuning should be trained with the same mel spectrogram parameters as used in the ASR model. The typical parameters are `10ms` hop length, `25ms` window length, and the highest band of 8kHz (for 16kHz data). Other parameters are the same as for common multi-speaker TTS models.\n",
"\n",
"Mainly we observed two differences specific to TTS models for ASR:\n",
"- adding more speakers and more data improves the final ASR model quality (but not the perceptual quality of the TTS model)\n",
"- training for more epochs can also improve the quality of the ASR system (but MSE loss used for the TTS model can be higher than optimal on validation data)\n",
"\n",
"Use script `<NeMo_git_root>/examples/tts/fastpitch.py` to train a FastPitch model.\n",
"More details about the FastPitch model can be found in the [documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/tts/models.html#fastpitch). \n",
"\n",
"### Enhancer\n",
"Use script `<NeMo_git_root>/examples/tts/spectrogram_enhancer.py` to train an Enhancer model. More details can be found in the \n",
"[documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/tts/models.html).\n",
"\n",
"### Models Used in This Tutorial\n",
"\n",
"Some details about the models used in this tutorial can be found on [NGC](https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/tts_en_fastpitch_spectrogram_enhancer_for_asr_finetuning).\n",
"\n",
"The system is also described in detail in the paper in the paper [Text-only domain adaptation for end-to-end ASR using integrated text-to-mel-spectrogram generator](https://arxiv.org/abs/2302.14036)."
]
},
{
"cell_type": "markdown",
"id": "9a9a6cd3-4bdc-4b6e-b4b1-3bfd50fd01b3",
"metadata": {},
"source": [
"## Summary"
]
},
{
"cell_type": "markdown",
"id": "e2890c61-e4b7-47aa-a086-bc483ae7141f",
"metadata": {},
"source": [
"The tutorial demonstrated the main concepts related to hybrid ASR-TTS models to finetune ASR models and train new ones from scratch. \n",
"The ability to achieve good text-only adaptation results is demonstrated by finetuning a small Conformer model on text-only data from the AN4 dataset."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "ml38",
"language": "python",
"name": "ml38"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|