File size: 35,775 Bytes
b386992 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 |
{
"cells": [
{
"cell_type": "markdown",
"id": "17b3cbf8",
"metadata": {},
"source": [
"# Context-Biasing for ASR models with CTC-based Word Spotter"
]
},
{
"cell_type": "markdown",
"id": "1156d1d1",
"metadata": {},
"source": [
"This tutorial aims to show how to improve the recognition accuracy of specific words in NeMo Framework\n",
"for CTC and Trasducer (RNN-T) ASR models by using the fast context-biasing method with CTC-based Word Spotter.\n",
"\n",
"## Tutorial content:\n",
"* Intro in the context-biasing problem\n",
"* Description of the proposed CTC-based Words Spotter (CTC-WS) method\n",
"* Practical part 1 (base):\n",
" * Download data set and ASR models\n",
" * Build context-biasing list\n",
" * Evaluate recognition results with and without context-biasing\n",
" * Improve context-biasing results with alternative transcriptions\n",
"* Practical part 2 (advanced):\n",
" * Visualization of context-biasing graph\n",
" * Running CTC-based Word Spotter only\n",
" * Merge greedy decoding results with spotted context-biasing candidates\n",
" * Results analysis\n",
"* Summary"
]
},
{
"cell_type": "markdown",
"id": "431edfbf",
"metadata": {},
"source": [
"## Context-biasing: intro\n",
"\n",
"ASR models often struggle to recognize words that were absent or had few examples in the training data.\n",
"This problem is especially acute due to the emergence of new names and titles in a rapidly developing world.\n",
"The users need to be able to recognize these new words.\n",
"Context-biasing methods attempt to solve this problem by assuming that we have a list of words and phrases (context-biasing list) in advance\n",
"for which we want to improve recognition accuracy.\n",
"\n",
"One of the directions of context-biasing methods is based on the `deep fusion` approach.\n",
"These methods require intervention into the ASR model and its training process.\n",
"The main disadvantage of these methods is that they require a lot of computational resources and time to train the model.\n",
"\n",
"Another direction is methods based on the `shallow fusion` approach. In this case, only the decoding process is modified.\n",
"During the beam-search decoding, the hypothesis is rescored depending on whether the current word is present in the context-biasing list or external language model.\n",
"The beam-search decoding may be computationally expensive, especially for the models with a large vocabulary and context-biasing list.\n",
"This problem is considerably worsened in the case of the Transducer (RNN-T) model since beam-search decoding involves multiple Decoder (Prediction) and Joint networks calculations.\n",
"Moreover, the context-biasing recognition is limited by the model prediction pool biased toward training data. In the case of rare or new words, the model may not have a hypothesis for the desired word from the context-biasing list whose probability we want to amplify."
]
},
{
"cell_type": "markdown",
"id": "ae0bfd60",
"metadata": {},
"source": [
"## CTC-based Word Spotter\n",
"\n",
"\n",
"This tutorial considers a fast context-biasing method using a CTC-based Word Spotter (CTC-WS).\n",
"The method involves decoding CTC log probabilities with a context graph built for words and phrases from the context-biasing list.\n",
"The spotted context-biasing candidates (with their scores and time intervals) are compared by scores with words from the greedy\n",
"CTC decoding results to improve recognition accuracy and pretend false accepts of context-biasing (Figure 1). \n",
" \n",
" \n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "c7e45bf2",
"metadata": {},
"source": [
"<figure markdown>\n",
" <img src=\"https://github.com/NVIDIA/NeMo/releases/download/v1.22.0/asset-post-v1.22.0-ctcws_scheme_2.png\" alt=\"CTC-WS\" style=\"width: 60%;\" height=\"auto\"> <!-- Adjust the width as needed -->\n",
" <figcaption><b>Figure 1.</b> <i> High-level representation of the proposed context-biasing method with CTC-WS in case of CTC model. Detected words (gpu, nvidia, cuda) are compared with words from the greedy CTC results in the overlapping intervals according to the accumulated scores to prevent false accept replacement. </i></figcaption>\n",
"</figure>"
]
},
{
"cell_type": "markdown",
"id": "ba163f41",
"metadata": {},
"source": [
"\n",
"<!-- <img width=\"500px\" height=\"auto\"\n",
" src=\"https://github.com/NVIDIA/NeMo/releases/download/v1.22.0/asset-post-v1.22.0-ctcws_scheme_2.png\"\n",
" alt=\"CTC-WS2\"\n",
" style=\"float: right; margin-left: 20px;\"> -->\n",
" \n",
"A [Hybrid Transducer-CTC](https://arxiv.org/abs/2312.17279) model (a shared encoder trained together with CTC and Transducer output heads) enables the use of the CTC-WS method for the Transducer model.\n",
"Context-biasing candidates obtained by CTC-WS are also filtered by the scores with greedy CTC predictions and then merged with greedy Transducer results.\n",
"\n",
"The CTC-WS method allows using pretrained NeMo models (`CTC` or `Hybrid Transducer-CTC`) for context-biasing recognition without model retraining (Figure 2).\n",
"The method shows inspired results for context-biasing with only a little additional work time and computational resources.\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "c05b16d8",
"metadata": {},
"source": [
"<figure markdown>\n",
" <img src=\"https://github.com/NVIDIA/NeMo/releases/download/v1.22.0/asset-post-v1.22.0-ctcws_scheme_1.png\" alt=\"CTC-WS\" style=\"width: 65%;\" align=\"center\"> <!-- Adjust the width as needed -->\n",
" <figcaption><b>Figure 2.</b> <i> Scheme of the context-biasing method with CTC-based Word Spotter. CTC-WS uses CTC log probabilities to detect context-biasing candidates. Obtained candidates are filtered by CTC word alignment and then merged with CTC or RNN-T word alignment to get the final text result. </i></figcaption>\n",
"</figure>"
]
},
{
"cell_type": "markdown",
"id": "ac0ec822",
"metadata": {},
"source": [
"# Installing dependencies"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "69c86a4f",
"metadata": {},
"outputs": [],
"source": [
"BRANCH = 'main'\n",
"\n",
"\"\"\"\n",
"You can run either this notebook locally (if you have all the dependencies and a GPU) or on Google Colab.\n",
"\n",
"Instructions for setting up Colab are as follows:\n",
"1. Open a new Python 3 notebook.\n",
"2. Import this notebook from GitHub (File -> Upload Notebook -> \"GITHUB\" tab -> copy/paste GitHub URL)\n",
"3. Connect to an instance with a GPU (Runtime -> Change runtime type -> select \"GPU\" for hardware accelerator)\n",
"4. Run this cell to set up dependencies.\n",
"\"\"\"\n",
"\n",
"import os\n",
"# either provide a path to local NeMo repository with NeMo already installed or git clone\n",
"\n",
"# option #1: local path to NeMo repo with NeMo already installed\n",
"NEMO_DIR_PATH = os.path.dirname(os.path.dirname(os.path.abspath('')))\n",
"\n",
"# check if Google Colab is being used\n",
"try:\n",
" import google.colab\n",
" IN_COLAB = True\n",
"except (ImportError, ModuleNotFoundError):\n",
" IN_COLAB = False\n",
"\n",
"# option #2: download NeMo repo\n",
"if IN_COLAB or not os.path.exists(os.path.join(NEMO_DIR_PATH, \"nemo\")):\n",
" ## Install dependencies\n",
" !apt-get install sox libsndfile1 ffmpeg\n",
"\n",
" !git clone -b $BRANCH https://github.com/NVIDIA/NeMo\n",
" %cd NeMo\n",
" !python -m pip install git+https://github.com/NVIDIA/NeMo.git@$BRANCH#egg=nemo_toolkit[all]\n",
" NEMO_DIR_PATH = os.path.abspath('')\n",
"\n",
"import sys\n",
"sys.path.insert(0, NEMO_DIR_PATH)"
]
},
{
"cell_type": "markdown",
"id": "5260d4fa",
"metadata": {},
"source": [
"## Practical part 1 (base)\n",
"In this part, we will consider the base usage of the CTC-WS method for pretrained NeMo models.\n",
"\n",
"### Data preparation.\n",
"We will use a subset of the GTC data set. The data set contains 10 audio files with NVIDIA GTC talks. \n",
"The primary data set feature is the computer science and engineering domain, which has a large number of unique terms and product names (NVIDIA, GPU, GeForce, Ray Tracing, Omniverse, teraflops, etc.), which is good fit for the context-biasing task. All the text data is normalized and lowercased."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "637f2c6d",
"metadata": {},
"outputs": [],
"source": [
"# download data\n",
"!wget https://asr-tutorial-data.s3.eu-north-1.amazonaws.com/context_biasing_data.gz\n",
"!tar -xvzf context_biasing_data.gz\n",
"!apt-get update && apt-get upgrade -y && apt-get install tree"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6baefc80",
"metadata": {},
"outputs": [],
"source": [
"!tree context_biasing_data"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "09fe748b",
"metadata": {},
"outputs": [],
"source": [
"from nemo.collections.asr.parts.utils.manifest_utils import read_manifest\n",
"\n",
"# data is already stored in nemo data manifest format\n",
"test_nemo_manifest = \"./context_biasing_data/gtc_data_subset_10f.json\"\n",
"test_data = read_manifest(test_nemo_manifest)\n",
"\n",
"for idx, item in enumerate(test_data):\n",
" print(f\"[{idx}]: {item['text']}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "64ab4764",
"metadata": {},
"outputs": [],
"source": [
"import librosa\n",
"import IPython.display as ipd\n",
"\n",
"# load and listen to the audio file example\n",
"example_file = test_data[0]['audio_filepath']\n",
"audio, sample_rate = librosa.load(example_file)\n",
"\n",
"file_id = 0\n",
"print(f\"[TEXT {file_id}]: {test_data[file_id]['text']}\\n\")\n",
"ipd.Audio(example_file, rate=sample_rate)"
]
},
{
"cell_type": "markdown",
"id": "a85ea8ec",
"metadata": {},
"source": [
"### Load ASR models\n",
"\n",
"For testing the CTC-WS method, we will use the following NeMo models:\n",
" - (CTC): [stt_en_fastconformer_ctc_large](https://huggingface.co/nvidia/stt_en_fastconformer_ctc_large) - a large fast-conformer model trained on English ASR data\n",
" - (Hybrid Transducer-CTC): [stt_en_fastconformer_hybrid_large_streaming_multi](https://huggingface.co/nvidia/stt_en_fastconformer_hybrid_large_streaming_multi) - a large fast-conformer model trained jointly with CTC and Transducer heads on English ASR data. The model is streaming, which means it can process audio in real time. It can cause a slight WER degradation in comparison with the first offline model."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d34ee0ba",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"from nemo.collections.asr.models import EncDecCTCModelBPE, EncDecHybridRNNTCTCBPEModel\n",
"\n",
"# ctc model\n",
"ctc_model_name = \"stt_en_fastconformer_ctc_large\"\n",
"ctc_model = EncDecCTCModelBPE.from_pretrained(model_name=ctc_model_name)\n",
"\n",
"# hybrid transducer-ctc model\n",
"hybrid_ctc_rnnt_model_name = \"stt_en_fastconformer_hybrid_large_streaming_multi\""
]
},
{
"cell_type": "markdown",
"id": "082208cd",
"metadata": {},
"source": [
"### Transcribe \n",
"Let's transcribe test data and analyze the regontion accuracy of specific words "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "74436885",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"test_audio_files = [item['audio_filepath'] for item in test_data]\n",
"recog_results = ctc_model.transcribe(test_audio_files)"
]
},
{
"cell_type": "markdown",
"id": "b993d650",
"metadata": {},
"source": [
"### Compute per-word recognition statisctic"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "70f5714b",
"metadata": {},
"outputs": [],
"source": [
"import texterrors\n",
"\n",
"word_dict = {} # {word: [num_of_occurances, num_of_correct_recognition]}\n",
"eps = \"<eps>\"\n",
"ref_text = [item['text'] for item in test_data]\n",
"\n",
"for idx, ref in enumerate(ref_text):\n",
" ref = ref.split()\n",
" hyp = recog_results[idx].text.split()\n",
" texterrors_ali = texterrors.align_texts(ref, hyp, False)\n",
" ali = []\n",
" for i in range(len(texterrors_ali[0])):\n",
" ali.append((texterrors_ali[0][i], texterrors_ali[1][i]))\n",
"\n",
" for pair in ali:\n",
" word_ref, word_hyp = pair\n",
" if word_ref == eps:\n",
" continue\n",
" if word_ref in word_dict:\n",
" word_dict[word_ref][0] += 1\n",
" else:\n",
" word_dict[word_ref] = [1, 0]\n",
" if word_ref == word_hyp:\n",
" word_dict[word_ref][1] += 1\n",
"\n",
"word_candidats = {}\n",
"\n",
"for word in word_dict:\n",
" gt = word_dict[word][0]\n",
" tp = word_dict[word][1]\n",
" if tp/gt < 1.0:\n",
" word_candidats[word] = [gt, round(tp/gt, 2)]\n",
" \n",
"# print obtained per-word statistic\n",
"word_candidats_sorted = sorted(word_candidats.items(), key=lambda x:x[1][0], reverse=True)\n",
"max_word_len = max([len(x[0]) for x in word_candidats_sorted])\n",
"for item in word_candidats_sorted:\n",
" print(f\"{item[0]:<{max_word_len}} {item[1][0]}/{item[1][1]}\")"
]
},
{
"cell_type": "markdown",
"id": "27a9f88b",
"metadata": {},
"source": [
"## Create a context-biasing list\n",
"\n",
"Now, we need to select the words, recognition of which we want to improve by CTC-WS context-biasing.\n",
"Usually, we select only nontrivial words with the lowest recognition accuracy.\n",
"Such words should have a character length >= 3 because short words in a context-biasing list may produce high false-positive recognition.\n",
"In this toy example, we will select all the words that look like names with a recognition accuracy less than 1.0.\n",
"\n",
"The structure of the context-biasing file is:\n",
"\n",
"WORD1_TRANSCRIPTION1 \n",
"WORD2_TRANSCRIPTION1 \n",
"...\n",
"\n",
"TRANSCRIPTION here is a word spelling. We need this structure to add alternative transcriptions (spellings) for some word. We will cover such a case further."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c27848f0",
"metadata": {},
"outputs": [],
"source": [
"cb_words = [\"gpu\", \"nvidia\", \"nvidia's\", \"nvlink\", \"omniverse\", \"cunumeric\", \"numpy\", \"dgx\", \"dgxs\", \"dlss\",\n",
" \"cpu\", \"tsmc\", \"culitho\", \"xlabs\", \"tensorrt\", \"tensorflow\", \"pytorch\", \"aws\", \"chatgpt\", \"pcie\"]\n",
"\n",
"# write context-biasing file \n",
"cb_list_file = \"context_biasing_data/context_biasing_list.txt\"\n",
"with open(cb_list_file, \"w\", encoding=\"utf-8\") as fn:\n",
" for word in cb_words:\n",
" fn.write(f\"{word}_{word}\\n\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b0e8c800",
"metadata": {},
"outputs": [],
"source": [
"!cat {cb_list_file}"
]
},
{
"cell_type": "markdown",
"id": "c44fc910",
"metadata": {},
"source": [
"## Run context-biasing evaluation\n",
"\n",
"The main script for CTC-WS context-biasing in NeMo is:\\\n",
"`{NEMO_DIR_PATH}/scripts/asr_context_biasing/eval_greedy_decoding_with_context_biasing.py`\n",
"\n",
"Context-biasing is managed by `apply_context_biasing` parameter [true or false]. \n",
"Other important context-biasing parameters are:\n",
"- `beam_threshold` - threshold for CTC-WS beam pruning\n",
"- `context_score` - per token weight for context biasing\n",
"- `ctc_ali_token_weight` - per token weight for CTC alignment (prevents false acceptances of context-biasing words) \n",
"\n",
"All the context-biasing parameters are selected according to the default values in the script. \n",
"You can tune them according to your data and ASR model (list all the values in the [] separated by commas) \n",
"for example: `beam_threshold=[7.0,8.0,9.0]`, `context_score=[3.0,4.0,5.0]`, `ctc_ali_token_weight=[0.5,0.6,0.7]`. \n",
"The script will run the recognition with all the combinations of the parameters and will select the best one based on WER value."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9a2d32e9",
"metadata": {},
"outputs": [],
"source": [
"# create directory with experimental results\n",
"import os\n",
"\n",
"exp_dir = \"exp\"\n",
"if not os.path.isdir(exp_dir):\n",
" os.makedirs(exp_dir)\n",
"else:\n",
" print(f\"Directory '{exp_dir}' already exists\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "116f2abe",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"# ctc model (no context-biasing)\n",
"\n",
"!python {NEMO_DIR_PATH}/scripts/asr_context_biasing/eval_greedy_decoding_with_context_biasing.py \\\n",
" nemo_model_file={ctc_model_name} \\\n",
" input_manifest={test_nemo_manifest} \\\n",
" preds_output_folder={exp_dir} \\\n",
" decoder_type=\"ctc\" \\\n",
" acoustic_batch_size=64 \\\n",
" apply_context_biasing=false \\\n",
" context_file={cb_list_file} \\\n",
" beam_threshold=[7.0] \\\n",
" context_score=[3.0] \\\n",
" ctc_ali_token_weight=[0.5]"
]
},
{
"cell_type": "markdown",
"id": "674d0af1",
"metadata": {},
"source": [
"The results must be:\n",
"\n",
"`Precision`: 1.0000 (1/1) fp:0 (fp - false positive recognition) \n",
"`Recall`: 0.0333 (1/30) \n",
"`Fscore`: 0.0645 \n",
"`Greedy WER/CER` = 35.68%/8.16%\n",
"\n",
"The model could recognize 1 out of 30 words from the context-biasing list.\n",
"Let's enable context-biasing during decoding:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "239da41d",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"# ctc model (with context biasing)\n",
"!python {NEMO_DIR_PATH}/scripts/asr_context_biasing/eval_greedy_decoding_with_context_biasing.py \\\n",
" nemo_model_file={ctc_model_name} \\\n",
" input_manifest={test_nemo_manifest} \\\n",
" preds_output_folder={exp_dir} \\\n",
" decoder_type=\"ctc\" \\\n",
" acoustic_batch_size=64 \\\n",
" apply_context_biasing=true \\\n",
" context_file={cb_list_file} \\\n",
" beam_threshold=[7.0] \\\n",
" context_score=[3.0] \\\n",
" ctc_ali_token_weight=[0.5]"
]
},
{
"cell_type": "markdown",
"id": "faa1e73c",
"metadata": {},
"source": [
"Now, recognition results are much better:\n",
"\n",
"`Precision`: 1.0000 (21/21) fp:0 \n",
"`Recall`: 0.7000 (21/30) \n",
"`Fscore`: 0.8235 \n",
"`Greedy WER/CER` = 17.09%/4.43%\n",
"\n",
"But we are still able to recognize only 21 out of 30 specific words.\\\n",
"You can see that unrecognized words are mostly abbreviations (`dgxs`, `dlss`, `gpu`, `aws`, etc.) or compound words (`culitho`).\\\n",
"The ASR models tends to recognize such words as a sequence of characters (`\"aws\" -> \"a w s\"`) or subwords (`\"culitho\" -> \"cu litho\"`).\\\n",
"We can try to improve the recognition of such words by adding alternative transcriptions to the context-biasing list."
]
},
{
"cell_type": "markdown",
"id": "d72b6391",
"metadata": {},
"source": [
"### Alternative transcriptions\n",
"\n",
"wordninja is used to split compound words into simple words according to the default word dictionary."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f7e00263",
"metadata": {},
"outputs": [],
"source": [
"!pip install wordninja"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "46fe91e9",
"metadata": {},
"outputs": [],
"source": [
"import wordninja\n",
"\n",
"cb_list_file_modified = cb_list_file + \".abbr_and_ninja\"\n",
"\n",
"with open(cb_list_file, \"r\", encoding=\"utf-8\") as fn1, \\\n",
" open(cb_list_file_modified, \"w\", encoding=\"utf-8\") as fn2:\n",
"\n",
" for line in fn1:\n",
" word = line.strip().split(\"_\")[0]\n",
" new_line = f\"{word}_{word}\"\n",
" # split all the short words into characters\n",
" if len(word) <= 4 and len(word.split()) == 1:\n",
" abbr = ' '.join(list(word))\n",
" new_line += f\"_{abbr}\"\n",
" # split the long words into the simple words (not for phrases)\n",
" new_segmentation = wordninja.split(word)\n",
" if word != new_segmentation[0]:\n",
" new_segmentation = ' '.join(new_segmentation)\n",
" new_line += f\"_{new_segmentation}\"\n",
" fn2.write(f\"{new_line}\\n\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "da69da45",
"metadata": {},
"outputs": [],
"source": [
"!cat {cb_list_file_modified}"
]
},
{
"cell_type": "markdown",
"id": "4a21cbf4",
"metadata": {},
"source": [
"Run context-biasing with modified context-biasing list:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "913a0f5e",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"# ctc models (with context biasing and modified cb list)\n",
"!python {NEMO_DIR_PATH}/scripts/asr_context_biasing/eval_greedy_decoding_with_context_biasing.py \\\n",
" nemo_model_file={ctc_model_name} \\\n",
" input_manifest={test_nemo_manifest} \\\n",
" preds_output_folder={exp_dir} \\\n",
" decoder_type=\"ctc\" \\\n",
" acoustic_batch_size=64 \\\n",
" apply_context_biasing=true \\\n",
" context_file={cb_list_file_modified} \\\n",
" beam_threshold=[7.0] \\\n",
" context_score=[3.0] \\\n",
" ctc_ali_token_weight=[0.5]"
]
},
{
"cell_type": "markdown",
"id": "654751ed",
"metadata": {},
"source": [
"Now, the recognition results are:\n",
"\n",
"`Precision`: 1.0000 (28/28) fp:1 \n",
"`Recall`: 0.9333 (28/30) \n",
"`Fscore`: 0.9655 \n",
"`Greedy WER/CER` = 7.04%/2.93%\n",
"\n",
"As you can see, that adding alternative transcriptions to the cb_list file improved the recognition accuracy of the context-biasing words. However, we still miss 2 words. Unfortunately, this algorithm is not a silver bullet.\n",
"\n",
"In some cases, you can improve results by adding alternative transcriptions manually based on the recognition errors of your ASR model for the specific words (for example, `\"nvidia\" -> \"n video\"`). "
]
},
{
"cell_type": "markdown",
"id": "b96c4023",
"metadata": {},
"source": [
"### Hybrid Transducer-CTC model\n",
"The CTC-WS context-biasing method for Transducer (RNN-T) models is supported only for Hybrid Transducer-CTC model. \n",
"To use Transducer head of the Hybrid Transducer-CTC model, we need to set `decoder_type=\"rnnt\"`. \n",
"Other parameters are the same as for the CTC model because the context-biasing is applied only on the CTC part of the model. Spotted context-biasing words will have been merged with greedy decoding results of the Transducer head.\n",
"\n",
"We can use already prepared context-biasing list because the CTC and Hybrid Transducer-CTC models have almost the same BPE tokenizer."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "456e47df",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"# Transducer model (no context-biasing)\n",
"!python {NEMO_DIR_PATH}/scripts/asr_context_biasing/eval_greedy_decoding_with_context_biasing.py \\\n",
" nemo_model_file={hybrid_ctc_rnnt_model_name} \\\n",
" input_manifest={test_nemo_manifest} \\\n",
" preds_output_folder={exp_dir} \\\n",
" decoder_type=\"rnnt\" \\\n",
" acoustic_batch_size=64 \\\n",
" apply_context_biasing=false \\\n",
" context_file={cb_list_file_modified} \\\n",
" beam_threshold=[7.0] \\\n",
" context_score=[3.0] \\\n",
" ctc_ali_token_weight=[0.5]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "773e11f1",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"# Transducer model (with context-biasing)\n",
"!python {NEMO_DIR_PATH}/scripts/asr_context_biasing/eval_greedy_decoding_with_context_biasing.py \\\n",
" nemo_model_file={hybrid_ctc_rnnt_model_name} \\\n",
" input_manifest={test_nemo_manifest} \\\n",
" preds_output_folder={exp_dir} \\\n",
" decoder_type=\"rnnt\" \\\n",
" acoustic_batch_size=64 \\\n",
" apply_context_biasing=true \\\n",
" context_file={cb_list_file_modified} \\\n",
" beam_threshold=[7.0] \\\n",
" context_score=[3.0] \\\n",
" ctc_ali_token_weight=[0.5]"
]
},
{
"cell_type": "markdown",
"id": "45a91385",
"metadata": {},
"source": [
"CTC-WS context-biasing works for Transducer model as well as for CTC (`F-score improvenment: 0.3784 -> 0.9286`). Differences in the nature of offline and online models may cause differences in results (usually, online models have a tendency to predict tokens earlier what can affect the difference between the timestamps of CTC and RNN-T models). "
]
},
{
"cell_type": "markdown",
"id": "1968e7bc",
"metadata": {},
"source": [
"## Practical part 2 (advanced)\n",
"In this section, we will consider the context-biasing process more deeply:\n",
"- Visualization of the context-biasing graph\n",
"- Running CTC-WS with the context-biasing graph\n",
"- Merge the obtained spotted words with greedy decoding results\n",
"- Analysis of the results"
]
},
{
"cell_type": "markdown",
"id": "277104b5",
"metadata": {},
"source": [
"### Build a context graph (for visualization only)\n",
"The context graph consists of a composition of a prefix tree (Trie) with the CTC transition topology for words and phrases from the context-biasing list. We use a BPE tokenizer from the target ASR model for word segmentation."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "55a36a27-919c-4d64-9163-b0b2c9dca15e",
"metadata": {},
"outputs": [],
"source": [
"# install graphviz from source in case of local run (not Google Colab)\n",
"# this may take about 5-10 minutes\n",
"# make sure that env variables have been set\n",
"\n",
"if not IN_COLAB:\n",
"\n",
" os.environ['DEBIAN_FRONTEND'] = 'noninteractive'\n",
" os.environ['TZ'] = 'Etc/UTC'\n",
"\n",
" !echo $DEBIAN_FRONTEND\n",
" !echo $TZ\n",
"\n",
" !{NEMO_DIR_PATH}/scripts/installers/install_graphviz.sh"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "904ea41b",
"metadata": {},
"outputs": [],
"source": [
"from nemo.collections.asr.parts import context_biasing\n",
"\n",
"# get bpe tokenization\n",
"cb_words_small = [\"nvidia\", \"gpu\", \"nvlink\", \"numpy\"]\n",
"context_transcripts = []\n",
"for word in cb_words_small:\n",
" # use text_to_tokens method for viasualization only\n",
" word_tokenization = ctc_model.tokenizer.text_to_tokens(word)\n",
" print(f\"{word}: {word_tokenization}\")\n",
" context_transcripts.append([word, [word_tokenization]])\n",
"\n",
"# build context graph\n",
"context_graph = context_biasing.ContextGraphCTC(blank_id=\"⊘\")\n",
"context_graph.add_to_graph(context_transcripts)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f7fab1e1",
"metadata": {},
"outputs": [],
"source": [
"context_graph.draw()"
]
},
{
"cell_type": "markdown",
"id": "04a6f4be",
"metadata": {},
"source": [
"### Build a real context graph (for decoding)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2ba2d8a1",
"metadata": {},
"outputs": [],
"source": [
"# get bpe tokenization\n",
"context_transcripts = []\n",
"for word in cb_words:\n",
" word_tokenization = [ctc_model.tokenizer.text_to_ids(x) for x in word]\n",
" context_transcripts.append([word, word_tokenization])\n",
"\n",
"# build context graph\n",
"context_graph = context_biasing.ContextGraphCTC(blank_id=ctc_model.decoding.blank_id)\n",
"context_graph.add_to_graph(context_transcripts)"
]
},
{
"cell_type": "markdown",
"id": "71e0e86b",
"metadata": {},
"source": [
"### Run CTC-based Word Spotter\n",
"\n",
"The CTC-WS task is to search for words by decoding CTC log probabilities using the context graph. As a result, we obtain a list of detected words with exact start/end frames in the audio file and their overall scores. The relatively small size of the context graph and hypotheses pruning methods allow this algorithm to work very quickly."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7c2c942e-e8df-4c09-a7de-87606ae453c9",
"metadata": {},
"outputs": [],
"source": [
"%pip install --upgrade jupyter ipywidgets"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f2bc370b",
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"from tqdm import tqdm\n",
"\n",
"# get ctc logprobs\n",
"audio_file_paths = [item['audio_filepath'] for item in test_data]\n",
"\n",
"with torch.no_grad():\n",
" ctc_model.eval()\n",
" ctc_model.encoder.freeze()\n",
" device = next(ctc_model.parameters()).device\n",
" hyp_results = ctc_model.transcribe(audio_file_paths, batch_size=10, return_hypotheses=True)\n",
" ctc_logprobs = [hyp.alignments.cpu().numpy() for hyp in hyp_results]\n",
" blank_idx = ctc_model.decoding.blank_id\n",
" \n",
"# run ctc-based word spotter\n",
"ws_results = {}\n",
"for idx, logits in tqdm(\n",
" enumerate(ctc_logprobs), desc=f\"Eval CTC-based Word Spotter...\", total=len(ctc_logprobs)\n",
"):\n",
" ws_results[audio_file_paths[idx]] = context_biasing.run_word_spotter(\n",
" logits,\n",
" context_graph,\n",
" ctc_model,\n",
" blank_idx=blank_idx,\n",
" beam_threshold=7.0,\n",
" cb_weight=3.0,\n",
" ctc_ali_token_weight=0.5,\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4bd6645c",
"metadata": {},
"outputs": [],
"source": [
"# print CTC-WS hypotheses for the first audio file\n",
"ws_results[audio_file_paths[0]]"
]
},
{
"cell_type": "markdown",
"id": "245a66f0",
"metadata": {},
"source": [
"### Merge CTC-WS words with greedy CTC decoding results\n",
"\n",
"Use `print_stats=True` to get more information about spotted words and greedy CTC word alignment."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "423b2b9e",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"\n",
"target_transcripts = [item['text'] for item in test_data]\n",
"\n",
"# merge spotted words with greedy results\n",
"for idx, logprobs in enumerate(ctc_logprobs):\n",
" greedy_predicts = np.argmax(logprobs, axis=1)\n",
" if ws_results[audio_file_paths[idx]]:\n",
" # make new text by mearging alignment with ctc-ws predictions:\n",
" print(\"\\n\" + \"********\" * 10)\n",
" print(f\"File name: {audio_file_paths[idx]}\")\n",
" pred_text, raw_text = context_biasing.merge_alignment_with_ws_hyps(\n",
" greedy_predicts,\n",
" ctc_model,\n",
" ws_results[audio_file_paths[idx]],\n",
" decoder_type=\"ctc\",\n",
" blank_idx=blank_idx,\n",
" print_stats=True,\n",
" )\n",
" print(f\"[raw text]: {raw_text}\")\n",
" print(f\"[hyp text]: {pred_text}\")\n",
" print(f\"[ref text]: {target_transcripts[idx]}\")\n",
" else:\n",
" # if no spotted words, use standard greedy predictions\n",
" pred_text = ctc_model.wer.decoding.ctc_decoder_predictions_tensor(greedy_predicts)[0].text"
]
},
{
"cell_type": "markdown",
"id": "fb8b5f51",
"metadata": {},
"source": [
"In these logs, you can find detailed context-biasing statistics about each audio file:\n",
"- Audio file name\n",
"- Greedy word alignment\n",
"- List of spotted words\n",
"- Text results:\n",
" - Greedy decoding (raw text)\n",
" - Text after applying context-biasing (hyp text)\n",
" - Ground truth transcription (ref text)\n",
" \n",
"These statistics can be helpful in case of problems with context-biasing word recognition. For example, Transducer models sometimes recognize tokens 1-2 frames earlier than CTC models. To solve this problem, you can shift the start frame of the detected word left in the CTC-WS sources."
]
},
{
"cell_type": "markdown",
"id": "11220db2",
"metadata": {},
"source": [
"## Summary\n",
"\n",
"This tutorial demonstrates how to use the CTC-WS context-biasing technique to improve the recognition accuracy of specific words in the case of CTC and Transducer (RNN-T) ASR models. The tutorial includes the methodology for creating the context-biasing list, improving recognition accuracy of abbreviations and compound words, visualization of the context-biasing process, and results analysis.\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|