File size: 10,639 Bytes
b386992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# Copyright (c) 2025, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from argparse import ArgumentParser

import torch
from lightning.pytorch.loggers import TensorBoardLogger
from megatron.core.dist_checkpointing.validation import StrictHandling
from megatron.core.distributed import DistributedDataParallelConfig
from megatron.core.optimizer import OptimizerConfig

from nemo import lightning as nl
from nemo.collections import llm
from nemo.collections.llm.gpt.data import ChatDataModule, MockDataModule
from nemo.collections.nlp.modules.common.tokenizer_utils import get_tokenizer
from nemo.lightning.pytorch.callbacks import ModelCheckpoint
from nemo.lightning.pytorch.optim import CosineAnnealingScheduler
from nemo.utils import logging

# Suppress lengthy HF warning
os.environ["TOKENIZERS_PARALLELISM"] = "false"


def get_args():
    """Parse the command-line arguments."""
    parser = ArgumentParser(
        description="""
            Script for training GPT models. Supports 4 modes, with different arguments needed in addition to the required arguments:
            1. Pretrain: no additional arguments required
            2. SFT: --use-chat-data required
            3. Distillation: --teacher_path required
            4. SFT Distillation: --use-chat-data and --teacher_path required
            """
    )
    parser.add_argument("--name", type=str, required=True, help="Experiment name")
    parser.add_argument(
        "--model_path",
        type=str,
        required=True,
        help="Path to NeMo 2 checkpoint. If only model_path is provided, the model will be trained (pretrain or SFT). If teacher_path is also provided, the model will be distilled.",
    )
    parser.add_argument(
        "--teacher_path",
        type=str,
        required=False,
        help="Path to NeMo 2 checkpoint to use as a distillation teacher. Will trigger distillation mode if provided.",
    )
    parser.add_argument("--kd_config", type=str, help="""Path to Knowledge-Distillation config file""")
    parser.add_argument("--tp_size", type=int, default=1, help="Tensor parallel size")
    parser.add_argument("--cp_size", type=int, default=1, help="Context parallel size")
    parser.add_argument("--pp_size", type=int, default=1, help="Pipeline parallel size")
    parser.add_argument("--ep_size", type=int, default=1, help="Expert parallel size")
    parser.add_argument("--precision", type=str, default="bf16-mixed", help="Datatype for models and optimizer")
    parser.add_argument("--devices", type=int, default=1, help="Number of GPUs to use per node")
    parser.add_argument("--num_nodes", type=int, default=1, help="Number of nodes to use")
    parser.add_argument("--log_dir", type=str, required=True, help="Folder for logging and checkpoint saving")
    parser.add_argument("--max_steps", type=int, required=True, help="Number of global batches to process")
    parser.add_argument("--gbs", type=int, required=True, help="Global Batch Size")
    parser.add_argument("--mbs", type=int, required=True, help="Micro-batch Size")
    parser.add_argument(
        "--data_paths",
        nargs="+",
        help="List of tokenized data paths to load from. If using chat data, provide a single path.",
    )
    parser.add_argument("--split", type=str, default="99,1,0", help="Train,Val,Test ratios to split data")
    parser.add_argument("--index_mapping_dir", type=str, help="Folder to write cached data indices")
    parser.add_argument("--use-chat-data", action="store_true", help="Use chat data for fine-tuning.")
    parser.add_argument(
        "--chat-template-path",
        type=str,
        help="Path to Chat template .txt file to use for chat data. Only provide if overriding default chat template in HuggingFace tokenizer.",
    )
    parser.add_argument(
        "--use_mock_data", action="store_true", help="Use mock data instead of custom data in --data_paths"
    )
    parser.add_argument("--seq_length", type=int, required=True, help="Number of tokens per input sample")
    parser.add_argument(
        "--tokenizer",
        type=str,
        help="Name of tokenizer model to override default. Required if using chat data (--use-chat-data).",
    )
    parser.add_argument("--lr", type=float, default=1e-4, help="Base LR for Cosine-Annealing scheduler")
    parser.add_argument("--min_lr", type=float, default=1e-5, help="Minimum LR for Cosine-Annealing scheduler")
    parser.add_argument("--warmup_steps", type=int, default=50, help="Number of scheduler warmup steps")
    parser.add_argument("--val_check_interval", type=int, default=100, help="Validate + checkpoint every _ steps")
    parser.add_argument("--limit_val_batches", type=int, default=32, help="Number of batches per validation stage")
    parser.add_argument("--log_interval", type=int, default=10, help="Write to log every _ steps")
    parser.add_argument("--legacy_ckpt", action="store_true", help="Load ckpt saved with TE < 1.14")
    return parser.parse_args()


def _read_chat_template(template_path: str):
    # pylint: disable=C0116
    if not template_path:
        return None
    with open(template_path, 'r') as f:
        return f.read().strip()


if __name__ == "__main__":
    args = get_args()

    ## Initialize the strategy and trainer
    strategy = nl.MegatronStrategy(
        tensor_model_parallel_size=args.tp_size,
        pipeline_model_parallel_size=args.pp_size,
        context_parallel_size=args.cp_size,
        expert_model_parallel_size=args.ep_size,
        sequence_parallel=(args.tp_size > 1),
        ddp=DistributedDataParallelConfig(
            grad_reduce_in_fp32=True,
            overlap_grad_reduce=True,
            overlap_param_gather=True,
            check_for_nan_in_grad=True,
            average_in_collective=True,
        ),
        ckpt_load_strictness=StrictHandling.LOG_ALL if args.legacy_ckpt else None,
    )
    trainer = nl.Trainer(
        devices=args.devices,
        num_nodes=args.num_nodes,
        max_steps=args.max_steps,
        log_every_n_steps=args.log_interval,
        val_check_interval=args.val_check_interval,
        limit_val_batches=args.limit_val_batches,
        strategy=strategy,
        accelerator="gpu",
        plugins=nl.MegatronMixedPrecision(
            precision=args.precision,
            params_dtype=torch.bfloat16 if "bf16" in args.precision else torch.float32,
            autocast_enabled=False,
            grad_reduce_in_fp32=True,
        ),
    )

    ## Set up dataset
    if not args.use_mock_data and not args.data_paths:
        raise ValueError("Must provide either custom dataset(s) in --data_paths or set --use_mock_data.")

    if args.use_mock_data:
        logging.warning("Using Mock Data for training!")
        data = MockDataModule(seq_length=args.seq_length, global_batch_size=args.gbs, micro_batch_size=args.mbs)
    elif args.use_chat_data:
        assert len(args.data_paths) == 1, "If using chat data, provide a single path."
        assert args.tokenizer is not None, "Tokenizer is required if using chat data."

        chat_template = _read_chat_template(args.chat_template_path)
        tokenizer = get_tokenizer(args.tokenizer, chat_template=chat_template)
        if '{% generation %}' not in tokenizer.tokenizer.chat_template:
            if not args.chat_template_path:
                raise ValueError(
                    "Tokenizer does not contain the '{% generation %}' keyword. Please provide a chat template path using --chat-template-path."
                )
            raise ValueError(
                "Please ensure the chat template includes a '{% generation %}' keyword for proper assistant mask during training. See https://github.com/huggingface/transformers/pull/30650"
            )
        data = ChatDataModule(
            dataset_root=args.data_paths[0],
            seq_length=args.seq_length,
            tokenizer=tokenizer,
            global_batch_size=args.gbs,
            micro_batch_size=args.mbs,
            use_hf_tokenizer_chat_template=True,
        )
    else:
        data = llm.PreTrainingDataModule(
            paths=args.data_paths,
            seq_length=args.seq_length,
            global_batch_size=args.gbs,
            micro_batch_size=args.mbs,
            split=args.split,
            index_mapping_dir=args.index_mapping_dir,
        )

    ## Set up optimizer
    optim_config = OptimizerConfig(
        optimizer="adam",
        lr=args.lr,
        bf16=("bf16" in args.precision),
        use_distributed_optimizer=True,
    )
    sched = CosineAnnealingScheduler(
        max_steps=args.max_steps,
        warmup_steps=args.warmup_steps,
        constant_steps=0,
        min_lr=args.min_lr,
    )
    optim = nl.MegatronOptimizerModule(optim_config, sched)

    ## Set up checkpointing and logging
    checkpoint_callback = ModelCheckpoint(
        monitor="val_loss",
        save_top_k=1,
        every_n_train_steps=args.val_check_interval,
    )
    logger = nl.NeMoLogger(
        name=args.name,
        log_dir=args.log_dir,
        ckpt=checkpoint_callback,
        tensorboard=TensorBoardLogger(os.path.join(args.log_dir, args.name)),
        update_logger_directory=False,
    )

    ## Set up resume and/or restore functionality
    resume = nl.AutoResume(
        resume_if_exists=True,
        resume_ignore_no_checkpoint=True,
        restore_config=nl.RestoreConfig(path=args.model_path),
    )

    if args.teacher_path:
        llm.distill(
            student_model_path=args.model_path,
            teacher_model_path=args.teacher_path,
            distillation_config_path=args.kd_config,
            data=data,
            trainer=trainer,
            log=logger,
            resume=resume,
            optim=optim,
            tokenizer=get_tokenizer(args.tokenizer) if args.tokenizer else None,
        )
    else:
        llm.train(
            model=args.model_path,
            data=data,
            trainer=trainer,
            optim=optim,
            log=logger,
            resume=resume,
            tokenizer="data" if args.use_chat_data else "model",
        )