File size: 5,355 Bytes
b386992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse

import os
import torch

from nemo.collections.diffusion.models.flux.pipeline import FluxInferencePipeline
from nemo.collections.diffusion.utils.flux_pipeline_utils import configs
from nemo.collections.diffusion.utils.mcore_parallel_utils import Utils


def parse_args():
    # pylint: disable=C0116
    parser = argparse.ArgumentParser(
        description="The flux inference pipeline is utilizing megatron core transformer.\n"
        "Please prepare the necessary checkpoints for flux model on local disk in order to use this script"
    )

    parser.add_argument("--flux_ckpt", type=str, default="", help="Path to Flux transformer checkpoint(s)")
    parser.add_argument("--vae_ckpt", type=str, default="/ckpts/ae.safetensors", help="Path to \'ae.safetensors\'")
    parser.add_argument(
        "--clip_version",
        type=str,
        default='/ckpts/text_encoder',
        help="Clip version, provide either ckpt dir or clip version like openai/clip-vit-large-patch14",
    )
    parser.add_argument(
        "--t5_version",
        type=str,
        default='/ckpts/text_encoder_2',
        help="Clip version, provide either ckpt dir or clip version like google/t5-v1_1-xxl",
    )
    parser.add_argument(
        "--t5_load_config_only",
        action='store_true',
        default=False,
        help="randomly initialize T5 weights for testing purpose",
    )
    parser.add_argument(
        "--do_convert_from_hf",
        action='store_true',
        default=False,
        help="Must be true if provided checkpoint is not already converted to NeMo version",
    )
    parser.add_argument(
        "--save_converted_model_to",
        type=str,
        default=None,
        help="Whether to save the converted NeMo transformer checkpoint for Flux",
    )
    parser.add_argument(
        "--version",
        type=str,
        default='dev',
        help="Must align with the checkpoint provided.",
    )
    parser.add_argument("--height", type=int, default=1024, help="Image height.")
    parser.add_argument("--width", type=int, default=1024, help="Image width.")
    parser.add_argument("--inference_steps", type=int, default=10, help="Number of inference steps to run.")
    parser.add_argument(
        "--num_images_per_prompt", type=int, default=1, help="Number of images to generate for each prompt."
    )
    parser.add_argument(
        "--num_joint_layers", type=int, default=19, help="Number of joint transformer layers in controlnet."
    )
    parser.add_argument(
        "--num_single_layers", type=int, default=38, help="Number of single transformer layers in controlnet."
    )
    parser.add_argument("--guidance", type=float, default=0.0, help="Guidance scale.")
    parser.add_argument(
        "--offload", action='store_true', default=False, help="Offload modules to cpu after being called."
    )
    parser.add_argument(
        "--prompts",
        type=str,
        default="A cat holding a sign that says hello world",
        help="Inference prompts, use \',\' to separate if multiple prompts are provided.",
    )
    parser.add_argument("--output_path", type=str, default="/tmp/flux_output", help="Path to save inference output.")
    args = parser.parse_args()
    return args


if __name__ == '__main__':
    args = parse_args()
    print('Initializing model parallel config')
    Utils.initialize_distributed(1, 1, 1)

    print('Initializing flux inference pipeline')
    params = configs[args.version]
    params.vae_config.ckpt = args.vae_ckpt if os.path.exists(args.vae_ckpt) else None
    params.clip_params.version = (
        args.clip_version if os.path.exists(args.clip_version) else "openai/clip-vit-large-patch14"
    )
    params.t5_params.version = args.t5_version if os.path.exists(args.t5_version) else "google/t5-v1_1-xxl"
    params.t5_params.load_config_only = args.t5_load_config_only

    params.flux_config.num_joint_layers = args.num_joint_layers
    params.flux_config.num_single_layers = args.num_single_layers
    pipe = FluxInferencePipeline(params)

    if os.path.exists(args.flux_ckpt):
        print('Loading transformer weights')
        pipe.load_from_pretrained(
            args.flux_ckpt,
            do_convert_from_hf=args.do_convert_from_hf,
            save_converted_model_to=args.save_converted_model_to,
        )
    dtype = torch.float32
    text = args.prompts.split(',')
    pipe(
        text,
        max_sequence_length=512,
        height=args.height,
        width=args.width,
        num_inference_steps=args.inference_steps,
        num_images_per_prompt=args.num_images_per_prompt,
        offload=args.offload,
        guidance_scale=args.guidance,
        dtype=dtype,
        output_path=args.output_path,
    )