File size: 11,931 Bytes
b386992 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Example:
torchrun --nproc_per_node=8 scripts/vlm/avlm_pretrain.py \
--devices=8 --tp=4 --data_type=mock
torchrun --nproc_per_node=8 scripts/vlm/avlm_pretrain.py \
--devices=8 --tp=4 --data_type=energon --data_path='' \
--language_model_path=/root/.cache/nemo/models/lmsys/vicuna-7b-v1.5
"""
import argparse
import torch
from lightning.pytorch.loggers import WandbLogger
from megatron.core.optimizer import OptimizerConfig
from megatron.core.transformer.enums import AttnBackend
from nemo import lightning as nl
from nemo.collections import avlm, llm, vlm
from nemo.collections.common.tokenizers.huggingface.auto_tokenizer import AutoTokenizer
from nemo.collections.speechlm.modules.asr_module import ASRModuleConfig
from nemo.lightning.pytorch.optim import CosineAnnealingScheduler
from nemo.lightning.pytorch.optim.megatron import MegatronOptimizerModule
from nemo.utils.exp_manager import TimingCallback
def main(args):
# pylint: disable=C0115,C0116
# Global and micro batch sizes
gbs = args.gbs
mbs = args.mbs
num_workers = args.num_workers
max_steps = args.max_steps
if args.sequence_parallel == "true":
args.sequence_parallel = True
elif args.sequence_parallel == "false":
args.sequence_parallel = False
else:
raise ValueError(f"Invalid sequence parallel value: {args.sequence_parallel}")
if args.use_packed_sequence == "true":
args.use_packed_sequence = True
elif args.use_packed_sequence == "false":
args.use_packed_sequence = False
else:
raise ValueError(f"Invalid use packed sequence value: {args.use_packed_sequence}")
decoder_seq_length = args.seq_length
if args.use_packed_sequence:
decoder_seq_length = int(args.seq_length * 2)
if args.data_type == "energon":
from nemo.collections.avlm.data.energon import AVLMDataModule, AVLMSampleConfig, AVLMTaskEncoder
data_path = args.data_path
avlm_sample_config = AVLMSampleConfig(
audio_encoder_config={ # whisper audio encoder
"model_type": "whisper",
"window_stride": 0.01,
"sample_rate": 16000,
"fixed_max_audio_length": 29.9999 * 16000,
"encoder_down_sampling": 2,
"num_mel_bins": None,
"patch_size": None,
"time_stride": None,
"frequency_stride": None,
"max_spectrogram_length": None,
},
image_encoder_config={
"model_type": "vit",
"img_width": 336,
"img_height": 336,
"patch_size": 14,
"projection_downsample_factor": None,
},
)
# Setting system prompt to empty string
avlm_sample_config.conversation_template_config.system = ''
task_encoder = AVLMTaskEncoder(
multimodal_sample_config=avlm_sample_config,
packed_sequence=args.use_packed_sequence,
packed_sequence_size=decoder_seq_length,
)
data = AVLMDataModule(
path=data_path,
num_workers=num_workers,
micro_batch_size=mbs,
global_batch_size=gbs,
seq_length=decoder_seq_length,
tokenizer=AutoTokenizer("llava-hf/llava-1.5-7b-hf"),
multimodal_sample_config=avlm_sample_config,
task_encoder=task_encoder,
packing_buffer_size=200 if args.use_packed_sequence else None,
)
elif args.data_type == "mock":
data = avlm.data.AVLMMockDataModule(
seq_length=decoder_seq_length,
global_batch_size=gbs,
micro_batch_size=mbs,
tokenizer=AutoTokenizer("llava-hf/llava-1.5-7b-hf"),
image_processor=None,
audio_processor=None,
num_workers=num_workers,
image_embedding_tokens=576, # e.g. for CLIP-ViT-L-14-336
audio_embedding_tokens=1500, # e.g. for Whisper
)
else:
raise ValueError(f"Data type {args.data_type} not supported")
# Submodules configurations
language_transformer_config = llm.Llama2Config7B(
seq_length=decoder_seq_length,
attention_backend=AttnBackend.fused,
)
vision_transformer_config = vlm.HFCLIPVisionConfig(
pretrained_model_name_or_path="openai/clip-vit-large-patch14-336"
)
vision_model_from_pretrained = None
# vision_transformer_config = vlm.CLIPViTL_14_336_Config()
# vision_model_from_pretrained = "/root/.cache/nemo/models/openai/clip-vit-large-patch14"
vision_projection_config = vlm.MultimodalProjectorConfig(
projector_type=args.projector_type,
input_size=vision_transformer_config.hidden_size,
hidden_size=language_transformer_config.hidden_size,
ffn_hidden_size=language_transformer_config.hidden_size,
)
# whisper audio encoder # need update NeMo from Steve's branch
audio_transformer_config = ASRModuleConfig(
_target_="nemo.collections.speechlm.modules.asr_module.ASRModuleConfig",
use_hf_auto_model=True,
hf_trust_remote_code=False,
hf_load_pretrained_weights=True,
pretrained_model="openai/whisper-large-v3",
hidden_size=1280,
target_module="model.encoder",
)
audio_projection_config = vlm.MultimodalProjectorConfig(
projector_type=args.projector_type,
input_size=audio_transformer_config.hidden_size, # need to set somehow?
hidden_size=language_transformer_config.hidden_size,
ffn_hidden_size=language_transformer_config.hidden_size,
)
# AVLM model configuration
avlm_config = avlm.AVLMConfig(
language_transformer_config=language_transformer_config,
vision_transformer_config=vision_transformer_config,
vision_projection_config=vision_projection_config,
audio_transformer_config=audio_transformer_config,
audio_projection_config=audio_projection_config,
language_model_from_pretrained=args.language_model_path,
vision_model_from_pretrained=vision_model_from_pretrained,
audio_model_from_pretrained=None,
freeze_language_model=True,
freeze_vision_model=True,
freeze_vision_projection=False,
freeze_audio_model=True,
freeze_audio_projection=False,
)
model = avlm.AVLMModel(avlm_config, tokenizer=data.tokenizer)
# Training strategy setup
strategy = nl.MegatronStrategy(
tensor_model_parallel_size=args.tp_size,
pipeline_model_parallel_size=args.pp_size,
encoder_pipeline_model_parallel_size=args.encoder_pp_size,
context_parallel_size=args.cp_size,
pipeline_dtype=torch.bfloat16,
sequence_parallel=args.sequence_parallel,
ckpt_async_save=True,
)
# Checkpoint callback setup
checkpoint_callback = nl.ModelCheckpoint(
save_last=True,
monitor="reduced_train_loss",
save_top_k=5,
every_n_train_steps=5000,
dirpath=args.log_dir,
)
# Trainer setup
trainer = nl.Trainer(
num_nodes=args.num_nodes,
devices=args.devices,
max_steps=max_steps,
accelerator="gpu",
strategy=strategy,
plugins=nl.MegatronMixedPrecision(precision="bf16-mixed"),
callbacks=[checkpoint_callback, TimingCallback()],
val_check_interval=args.val_check_interval,
check_val_every_n_epoch=None,
# limit_val_batches=1.0,
limit_val_batches=20,
log_every_n_steps=1,
num_sanity_val_steps=0,
)
# Logger setup
nemo_logger = nl.NeMoLogger(
log_dir=args.log_dir,
name=args.name,
wandb=WandbLogger(project=args.wandb_project, name=args.name) if args.wandb_project is not None else None,
)
# Auto resume setup
resume = nl.AutoResume(
resume_if_exists=True,
resume_ignore_no_checkpoint=True,
resume_from_directory=args.log_dir,
restore_config=(
nl.RestoreConfig(path=args.restore_path, load_optim_state=False) if args.restore_path is not None else None
),
)
# Optimizer and scheduler setup
opt_config = OptimizerConfig(
optimizer='adam',
lr=args.lr,
adam_beta1=0.9,
adam_beta2=0.95,
use_distributed_optimizer=True,
bf16=True,
clip_grad=1.0,
)
sched = CosineAnnealingScheduler(
max_steps=trainer.max_steps,
warmup_steps=150,
constant_steps=0,
min_lr=2.0e-05,
)
opt = MegatronOptimizerModule(opt_config, sched)
llm.pretrain(
model=model,
data=data,
trainer=trainer,
log=nemo_logger,
optim=opt,
resume=resume,
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="AVLM Pretraining Script")
# Argument parsing
parser.add_argument("--data_type", type=str, required=False, default="mock", help="mock | energon")
parser.add_argument("--data_path", type=str, required=False, default=None, help="Path to the dataset JSON file")
parser.add_argument(
"--log_dir", type=str, required=False, default="/results", help="Directory for logging and checkpoints"
)
parser.add_argument(
"--language_model_path", type=str, required=False, default=None, help="Path to the pretrained language model"
)
parser.add_argument(
"--restore_path", type=str, required=False, default=None, help="Path to restore model from checkpoint"
)
parser.add_argument("--devices", type=int, required=False, default=1)
parser.add_argument("--num_nodes", type=int, required=False, default=1)
parser.add_argument("--max_steps", type=int, required=False, default=2000)
parser.add_argument("--val_check_interval", type=int, required=False, default=500)
parser.add_argument("--seq_length", type=int, required=False, default=8192)
parser.add_argument("--tp_size", type=int, required=False, default=1)
parser.add_argument("--pp_size", type=int, required=False, default=1)
parser.add_argument("--encoder_pp_size", type=int, required=False, default=0)
parser.add_argument("--cp_size", type=int, required=False, default=1)
parser.add_argument(
"--sequence_parallel", type=str, required=False, default="false", help="Enable sequence parallel"
)
parser.add_argument(
"--use_packed_sequence", type=str, required=False, default="false", help="Enable sequence packing"
)
parser.add_argument("--projector_type", type=str, required=False, default="mlp2x_gelu")
parser.add_argument("--name", type=str, required=False, default="avlm_pretrain")
parser.add_argument("--wandb_project", type=str, required=False, default=None)
parser.add_argument("--gbs", type=int, required=False, default=32, help="Global batch size")
parser.add_argument("--mbs", type=int, required=False, default=4, help="Micro batch size")
parser.add_argument(
"--num_workers", type=int, required=False, default=32, help="Number of workers for data loading"
)
parser.add_argument("--lr", type=float, required=False, default=0.001, help="Learning rate")
args = parser.parse_args()
main(args)
|